• Title/Summary/Keyword: posterior probabilities

Search Result 97, Processing Time 0.026 seconds

On the Development of Probability Matching Priors for Non-regular Pareto Distribution

  • Lee, Woo Dong;Kang, Sang Gil;Cho, Jang Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.333-339
    • /
    • 2003
  • In this paper, we develop the probability matching priors for the parameters of non-regular Pareto distribution. We prove the propriety of joint posterior distribution induced by probability matching priors. Through the simulation study, we show that the proposed probability matching Prior matches the coverage probabilities in a frequentist sense. A real data example is given.

Mission Reliability Prediction Using Bayesian Approach (베이지안기법에 의한 임무 신뢰도 예측)

  • ;;;Jun, C. H.;Chang, S. Y.;Lim, H. R.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 1993
  • A Baysian approach is proposed is estimating the mission failure rates by criticalities. A mission failure which occurs according to a Poisson process with unknown rate is assumed to be classified as one of the criticality levels with an unknown probability. We employ the Gamma prior for the mission failure rate and the Dirichlet prior for the criticality probabilities. Posterior distributions of the mission rates by criticalities and predictive distributions of the time to failure are derived.

  • PDF

Noninformative priors for the common location parameter in half-normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.757-764
    • /
    • 2010
  • In this paper, we develop the reference priors for the common location parameter in the half-normal distributions with unequal scale paramters. We derive the reference priors as noninformative prior and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

Noninformative priors for the reliability function of two-parameter exponential distribution

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.361-369
    • /
    • 2011
  • In this paper, we develop the reference and the matching priors for the reliability function of two-parameter exponential distribution. We derive the reference priors and the matching prior, and prove the propriety of joint posterior distribution under the general prior including the reference priors and the matching prior. Through the sim-ulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

Reference priors for nonregular Pareto distribution

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.819-826
    • /
    • 2011
  • In this paper, we develop the reference priors for the scale and shape parameters in the nonregular Pareto distribution. We derive the reference priors as noninformative priors and prove the propriety of joint posterior distribution under the general priors including reference priors in the order of inferential importance. Through the simulation study, we compare the reference priors with respect to coverage probabilities of parameter of interest in a frequentist sense.

Reference Priors for the Location Parameter in the Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1409-1418
    • /
    • 2008
  • In this paper, we develop the reference priors for the common location parameter in two parameter exponential distributions. We derive the reference priors and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference prior matches the target coverage probabilities in a frequentist sense.

  • PDF

Noninformative priors for the common scale parameter in Pareto distributions

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.335-343
    • /
    • 2010
  • In this paper, we develop the reference priors for the common scale parameter in the nonregular Pareto distributions with unequal shape paramters. We derive the reference priors as noninformative prior and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN

  • Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.22-32
    • /
    • 2019
  • On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.

Minimum Classification Error Training to Improve Discriminability of PCMM-Based Feature Compensation (PCMM 기반 특징 보상 기법에서 변별력 향상을 위한 Minimum Classification Error 훈련의 적용)

  • Kim Wooil;Ko Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.58-68
    • /
    • 2005
  • In this paper, we propose a scheme to improve discriminative property in the feature compensation method for robust speech recognition under noisy environments. The estimation of noisy speech model used in existing feature compensation methods do not guarantee the computation of posterior probabilities which discriminate reliably among the Gaussian components. Estimation of Posterior probabilities is a crucial step in determining the discriminative factor of the Gaussian models, which in turn determines the intelligibility of the restored speech signals. The proposed scheme employs minimum classification error (MCE) training for estimating the parameters of the noisy speech model. For applying the MCE training, we propose to identify and determine the 'competing components' that are expected to affect the discriminative ability. The proposed method is applied to feature compensation based on parallel combined mixture model (PCMM). The performance is examined over Aurora 2.0 database and over the speech recorded inside a car during real driving conditions. The experimental results show improved recognition performance in both simulated environments and real-life conditions. The result verifies the effectiveness of the proposed scheme for increasing the performance of robust speech recognition systems.