References
- Aigner, D. J., Lovell, C. A. K. and Schmidt, P. (1977). Formulation and estimation of stochastic frontier production models. Journal of Econometrics, 6, 21-37. https://doi.org/10.1016/0304-4076(77)90052-5
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.2307/2289864
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, J.M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society, B, 41, 113-147.
- Datta, G. S. (1996). On priors providing frequentist validity for Bayesian inference for multiple parametric functions. Biometrika, 83, 287-298. https://doi.org/10.1093/biomet/83.2.287
- Datta, G. S. and Ghosh, J. K. (1995). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37-45. https://doi.org/10.1093/biomet/82.1.37
- DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted prole likelihood. Journal of Royal Statistical Society, B, 56, 397-408.
- Dobzhansky, T. and Wright, S. (1943). Genetics of natural populations. X. dispersion rates in drosophila pseudoobscura. Genetics, 28, 304-340.
- Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test, 6, 159-186. https://doi.org/10.1007/BF02564432
- Ghosal, S. (1999). Probability matching priors for non-regular cases. Biometrika, 86, 956-964. https://doi.org/10.1093/biomet/86.4.956
- Ghosal, S. and Samanta, T. (1997). Expansion of Bayes risk for entropy loss and reference prior in nonregular cases. Statistics and Decisions, 15, 129-140.
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). Bayesian Statistics IV, J.M. Bernardo et al., Oxford University Press, Oxford, 195-210.
- Haberle, J. G. (1991). Strength and failure mechanisms of unidirectional carbon bre-reinforced plastics under axial compression. Unpublished Ph.D. thesis, Imperial College, London, U.K.
- Johnson, N., Kotz, S. and Balakrishnan, N. (1994). Continuous univariate distributions, Vol 1(2nd ed.). New york: Wiley.
- Kang, S. G. (2010). Bayesian hypothesis testing for homogeneity of coecients of variation in k normal populations. Journal of the Korean Data & Information Science Society, 21, 163-172.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Reference priors for the location parameter in the exponential distributions. Journal of the Korean Data & Information Science Society, 19, 1409-1418.
- Kim, D. H., Kang, S. G. and Lee, W. D. (2009a). An objective Bayesian analysis for multiple step stress accelerated life tests. Journal of the Korean Data & Information Science Society, 20, 601-614.
- Kim, D. H., Kang, S. G. and Lee, W. D. (2009b). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
- Meeusen, W. J. and van den Broeck, J. (1977). Efficiency estimation from Cobb Douglas production functions with composed error. International Economic Review, 8, 435-444.
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Pewsey, A. (2002). Large-sample inference for the general half-normal distribution. Communications in Statistics-Theory and Methods, 31, 1045-1054. https://doi.org/10.1081/STA-120004901
- Pewsey, A. (2004). Improved likelihood based inference for the general half-normal distribution. Communications in Statistics-Theory and Methods, 33, 197-204. https://doi.org/10.1081/STA-120028370
- Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics. Banach Center Publications, 16, 485-514.
- Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
- Welch, B. L. and Peers, H. W. (1963). On formulae for condence points based on integrals of weighted likelihood. Journal of Royal Statistical Society, B, 25, 318-329.
- Wiper, M. P., Giron, F. J. and Pewsey, A. (2008). Objective Bayesian inference for the half-normal and half-t distributions. Communications in Statistics-Theory and Methods, 37, 3165-3185. https://doi.org/10.1080/03610920802105184