Noninformative priors for the common location parameter in half-normal distributions

  • Kang, Sang-Gil (Department of Data Information, Sangji University) ;
  • Kim, Dal-Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo-Dong (Department of Asset Management, Daegu Haany University)
  • Received : 2010.04.14
  • Accepted : 2010.07.13
  • Published : 2010.07.31

Abstract

In this paper, we develop the reference priors for the common location parameter in the half-normal distributions with unequal scale paramters. We derive the reference priors as noninformative prior and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

Keywords

References

  1. Aigner, D. J., Lovell, C. A. K. and Schmidt, P. (1977). Formulation and estimation of stochastic frontier production models. Journal of Econometrics, 6, 21-37. https://doi.org/10.1016/0304-4076(77)90052-5
  2. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.2307/2289864
  3. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, J.M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  4. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society, B, 41, 113-147.
  5. Datta, G. S. (1996). On priors providing frequentist validity for Bayesian inference for multiple parametric functions. Biometrika, 83, 287-298. https://doi.org/10.1093/biomet/83.2.287
  6. Datta, G. S. and Ghosh, J. K. (1995). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37-45. https://doi.org/10.1093/biomet/82.1.37
  7. DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted pro le likelihood. Journal of Royal Statistical Society, B, 56, 397-408.
  8. Dobzhansky, T. and Wright, S. (1943). Genetics of natural populations. X. dispersion rates in drosophila pseudoobscura. Genetics, 28, 304-340.
  9. Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test, 6, 159-186. https://doi.org/10.1007/BF02564432
  10. Ghosal, S. (1999). Probability matching priors for non-regular cases. Biometrika, 86, 956-964. https://doi.org/10.1093/biomet/86.4.956
  11. Ghosal, S. and Samanta, T. (1997). Expansion of Bayes risk for entropy loss and reference prior in nonregular cases. Statistics and Decisions, 15, 129-140.
  12. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). Bayesian Statistics IV, J.M. Bernardo et al., Oxford University Press, Oxford, 195-210.
  13. Haberle, J. G. (1991). Strength and failure mechanisms of unidirectional carbon bre-reinforced plastics under axial compression. Unpublished Ph.D. thesis, Imperial College, London, U.K.
  14. Johnson, N., Kotz, S. and Balakrishnan, N. (1994). Continuous univariate distributions, Vol 1(2nd ed.). New york: Wiley.
  15. Kang, S. G. (2010). Bayesian hypothesis testing for homogeneity of coecients of variation in k normal populations. Journal of the Korean Data & Information Science Society, 21, 163-172.
  16. Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Reference priors for the location parameter in the exponential distributions. Journal of the Korean Data & Information Science Society, 19, 1409-1418.
  17. Kim, D. H., Kang, S. G. and Lee, W. D. (2009a). An objective Bayesian analysis for multiple step stress accelerated life tests. Journal of the Korean Data & Information Science Society, 20, 601-614.
  18. Kim, D. H., Kang, S. G. and Lee, W. D. (2009b). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
  19. Meeusen, W. J. and van den Broeck, J. (1977). Efficiency estimation from Cobb Douglas production functions with composed error. International Economic Review, 8, 435-444.
  20. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
  21. Pewsey, A. (2002). Large-sample inference for the general half-normal distribution. Communications in Statistics-Theory and Methods, 31, 1045-1054. https://doi.org/10.1081/STA-120004901
  22. Pewsey, A. (2004). Improved likelihood based inference for the general half-normal distribution. Communications in Statistics-Theory and Methods, 33, 197-204. https://doi.org/10.1081/STA-120028370
  23. Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics. Banach Center Publications, 16, 485-514.
  24. Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  25. Welch, B. L. and Peers, H. W. (1963). On formulae for con dence points based on integrals of weighted likelihood. Journal of Royal Statistical Society, B, 25, 318-329.
  26. Wiper, M. P., Giron, F. J. and Pewsey, A. (2008). Objective Bayesian inference for the half-normal and half-t distributions. Communications in Statistics-Theory and Methods, 37, 3165-3185. https://doi.org/10.1080/03610920802105184