References
- Abimbola, M., Khan, F., Khakzad, N., Butt, S., 2015. Safety and risk analysis of managed pressure drilling operation using Bayesian network. Saf. Sci. 76, 133-144. https://doi.org/10.1016/j.ssci.2015.01.010
- Abimbola, M., Khan, F., Khakzad, N., 2014. Dynamic safety risk analysis of offshore drilling. J. Loss Prev. Process. Ind. 30, 74-85. https://doi.org/10.1016/j.jlp.2014.05.002
- Adedigba, S.A., Khan, F., Yang, M., 2016a. Dynamic safety analysis of process systems using nonlinear and non-sequential accident model. Chem. Eng. Res. Des. 111, 169-183. https://doi.org/10.1016/j.cherd.2016.04.013
- Adedigba, S.A., Khan, F., Yang, M., 2016b. Process accident model considering dependency among contributory factors. Process Saf. Environ. Protect. 102, 633-647. https://doi.org/10.1016/j.psep.2016.05.004
- Adedigba, S.A., Khan, F., Yang, M., 2017. Dynamic failure analysis of process systems using neural networks. Process Saf. Environ. Protect. 111, 529-543. https://doi.org/10.1016/j.psep.2017.08.005
- Amyotte, P.R., Berger, S., Edwards, D.W., Gupta, J.P., Hendershot, D.C., Khan, F.I., Willey, R.J., 2016. Why major accidents are still occurring. Cur. Opin. Chem. Eng. 14, 1-8. https://doi.org/10.1016/j.coche.2016.07.003
- Akyuz, E., Celik, E., 2015. A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. J. Loss Prev. Process. Ind. 38, 243-253. https://doi.org/10.1016/j.jlp.2015.10.006
- Berner, C., Flage, R., 2016. Strengthening quantitative risk assessments by systematic treatment of uncertain assumptions. Reliab. Eng. Syst. Saf. 151, 46-59. https://doi.org/10.1016/j.ress.2015.10.009
- Bhandari, J., Abbassi, R., Garaniya, V., Khan, F., 2015. Risk analysis of deepwater drilling operations using Bayesian network. J. Loss Prev. Process. Ind. 38, 11-23. https://doi.org/10.1016/j.jlp.2015.08.004
- Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E., 2001. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng. Syst. Saf. 71 (3), 249-260. https://doi.org/10.1016/S0951-8320(00)00077-6
- Cai, B., Liu, Y., Fan, Q., Zhang, Y., Yu, S., Liu, Z., Dong, X., 2013a. Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance. Eng. Appl. Artif. Intell. 26 (10), 2661-2672. https://doi.org/10.1016/j.engappai.2013.08.011
- Cai, B., Liu, Y., Liu, Z., Tian, X., Zhang, Y., Ji, R., 2013b. Application of Bayesian networks in quantitative risk assessment of subsea blowout preventer operations. Risk Anal. 33 (7), 1293-1311. https://doi.org/10.1111/j.1539-6924.2012.01918.x
- Cai, B., Liu, Y., Ma, Y., Huang, L., Liu, Z., 2015. A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults. Energy 93, 1308-1320. https://doi.org/10.1016/j.energy.2015.10.068
- Cai, B., Liu, Y., Zhang, Y., Fan, Q., Liu, Z., Tian, X., 2013c. A dynamic Bayesian networks modeling of human factors on offshore blowouts. J. Loss Prev. Process. Ind. 26 (4), 639-649. https://doi.org/10.1016/j.jlp.2013.01.001
- Deyab, M.S., Mohammed, T., Khan, F., 2018. Failure Analysis of the Offshore Process Component Considering Causation Dependence, vol. 113, pp. 220-232. https://doi.org/10.1016/j.psep.2017.10.010
- Kalantarnia, M., Khan, F., Hawboldt, K., 2009. Dynamic risk assessment using failure assessment and Bayesian theory. J. Loss Prev. Process. Ind. 22 (5), 600-606. https://doi.org/10.1016/j.jlp.2009.04.006
- Kalantarnia, M., Khan, F., Hawboldt, K., 2010. Modelling of BP Texas City refinery accident using dynamic risk assessment approach. Process Saf. Environ. Protect. 88 (3), 191-199. https://doi.org/10.1016/j.psep.2010.01.004
- Khakzad, N., Khan, F., Amyotte, P., 2012. Dynamic risk analysis using bow-tie approach. Reliab. Eng. Syst. Saf. 104, 36-44. https://doi.org/10.1016/j.ress.2012.04.003
- Khakzad, N., Khan, F., Amyotte, P., 2013. Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Saf. Environ. Protect. 91, 46-53. https://doi.org/10.1016/j.psep.2012.01.005
- Khakzad, N., Khan, F., Paltrinieri, N., 2014. On the application of near accident data to risk analysis of major accidents. Reliab. Eng. Syst. Saf. 126, 116-125. https://doi.org/10.1016/j.ress.2014.01.015
- Khakzad, N., Reniers, G., Abbassi, R., Khan, F., 2016. Vulnerability analysis of process plants subject to dominoeffects. Reliab. Eng. Syst. Saf. 154, 127-136. https://doi.org/10.1016/j.ress.2016.06.004
- Khan, F., Rathnayaka, S., Ahmed, S., 2015. Methods and models in process safety and risk management: past, present and future. Process Saf. Environ. Protect. 98, 116-147. https://doi.org/10.1016/j.psep.2015.07.005
- Li, W., Zhang, L., Liang, W., 2017. An accident causation analysis and taxonomy (ACAT) model of complex industrial system from both system safety and control theory perspectives. Saf. Sci. 92, 94-103. https://doi.org/10.1016/j.ssci.2016.10.001
- Li, X., Chen, G., Zhu, H., 2016. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network. Process Saf. Environ. Protect. 103, 163-173. https://doi.org/10.1016/j.psep.2016.06.006
- Meel, A., Seider, W.D., 2006. Plant-specific dynamic failure assessment using Bayesian theory. Chem. Eng. Sci. 61, 7036-7056. https://doi.org/10.1016/j.ces.2006.07.007
- Meel, A., Seider, W.D., 2008. Real-time risk analysis of safety systems. Comput. Chem. Eng. 32, 827-840. https://doi.org/10.1016/j.compchemeng.2007.03.006
- Mentes, A., Akyildiz, H., Yetkin, M., Turkoglu, N., 2015. A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey. Saf. Sci. 79, 1-10. https://doi.org/10.1016/j.ssci.2015.05.004
- OGP UK, 2010. Risk Assessment Data Directory: Risers and Pipeline Release Frequencies. http://www.ogp.org.uk/pubs/434-04.pdf.
- OREDA Participants, 2002. Offshore Reliability Data Handbook. Det Norske Veritas (DNV), Norway.
- Paik, J.K., Czujko, J., Kim, B.J., Seo, J.K., Ryu, H.S., Ha, Y.C., Musial, B., 2011. Quantitative assessment of hydrocarbon explosion and fire risks in offshore installations. Mar. Struct. 24 (2), 73-96. https://doi.org/10.1016/j.marstruc.2011.02.002
- Paltrinieri, N., Khan, F., 2016. Dynamic Risk Analysis in the Chemical and Petroleum Industry. Butterworth Heinemann.
- Pranesh, V., Palanichamy, K., Saidat, O., Peter, N., 2017. Lack of dynamic leadership skills and human failure contribution analysis to manage risk in deep water horizon oil platform. Saf. Sci. 92, 85-93. https://doi.org/10.1016/j.ssci.2016.09.013
- Tan, Q., Chen, G., Chang, Y., Fu, J., 2013. Dynamic risk analysis of high-sulfur wellhead gas-liquid separator based on Bayesian method. . J. China Univ. Petrol. 37 (6), 129-134.
- Tan, Q., Chen, G., Zhang, L., Fu, J., Li, Z., 2014. Dynamic accident modeling for high-sulfur natural gas gathering station. Process Saf. Environ. Protect. 92 (6), 565-576. https://doi.org/10.1016/j.psep.2013.03.004
- Vinnem, J.E., 2011. Evaluation of offshore emergency preparedness in view of rare accidents. Saf. Sci. 49 (2), 178-191. https://doi.org/10.1016/j.ssci.2010.07.010
- Vinnem, J.E., 2014a. Offshore Risk Assessment: Principles, Modelling and Applications of QRA Studies, third ed. (Stavanger, Norway).
- Vinnem, J.E., 2014b. Uncertainties in a risk management context in early phases of offshore petroleum field development. J. Loss Prev. Process. Ind. 32, 367-376. https://doi.org/10.1016/j.jlp.2014.10.010
- Wang,W., Su, J., Ma, D., Tian, J., 2012. Integrated risk assessment of complex disaster system based on a non-linear information dynamics model. Sci. China Technol. Sci. 55 (12), 3344-3351. https://doi.org/10.1007/s11431-012-5060-x
- Zarei, E., Azadeh, A., Khakzad, N., Aliabadi, M.M., Mohammadfam, I., 2017. Dynamic safety assessment of natural gas stations using Bayesian network. J. Hazard Mater. 321, 830-840. https://doi.org/10.1016/j.jhazmat.2016.09.074
Cited by
- Role of Bead Sequence in Underwater Welding vol.12, pp.20, 2019, https://doi.org/10.3390/ma12203372
- New Risk Methodology Based on Control Charts to Assess Occupational Risks in Manufacturing Processes vol.12, pp.22, 2019, https://doi.org/10.3390/ma12223722
- Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine vol.12, 2019, https://doi.org/10.1016/j.ijnaoe.2020.09.003
- Investigating Vapour Cloud Explosion Dynamic Fatality Risk on Offshore Platforms by Using a Grid-Based Framework vol.8, pp.6, 2020, https://doi.org/10.3390/pr8060685
- DEVELOPING A COMPREHENSIVE RISK ASSESSMENT MODEL BASED ON FUZZY BAYESIAN BELIEF NETWORK (FBBN) vol.26, pp.7, 2020, https://doi.org/10.3846/jcem.2020.12322
- Analysis and Characterization of Risk Methodologies Applied to Industrial Parks vol.12, pp.18, 2019, https://doi.org/10.3390/su12187294
- Critical factors to green mining construction in China: A two-step fuzzy DEMATEL analysis of state-owned coal mining enterprises vol.273, 2019, https://doi.org/10.1016/j.jclepro.2020.122852
- Operational risk analysis of blowout scenario in offshore drilling operation vol.149, 2019, https://doi.org/10.1016/j.psep.2020.11.010
- A quantitative LNG risk assessment model based on integrated Bayesian-Catastrophe-EPE method vol.137, 2019, https://doi.org/10.1016/j.ssci.2021.105184
- Dynamic and quantitative risk assessment under uncertainty during deepwater managed pressure drilling vol.334, 2022, https://doi.org/10.1016/j.jclepro.2021.130249