References
- Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S., 2003. A geometrical area-preserving Volume-of-Fluid advection method. J. Comput. Phys. 192 (1) https://doi.org/10.1016/j.jcp.2003.07.003.
- Batchelor, F.R., 1967. An Introduction to Fluid Dynamics. Cambridge University Press.
- Beaudoin, M., Jasak, H., 2008. Development of generalized grid interface for turbomachinery simulations with OpenFOAM. In: Proceedings of the Open Source CFD International Conference.
- Carrica, P., Castro, A., Stern, F., 2010. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. J. Mar. Sci. Technol. 15, 316-330. https://doi.org/10.1007/s00773-010-0098-6.
- Carrica, P.M., Fu, H., Stern, F., 2011. Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model. Appl. Ocean Res. 33, 309-320. https://doi.org/10.1016/j.apor.2011.07.003
- Carrica, P.M., Mofidi, A., Martin, E., 2015. Progress toward Dire:t CFD simulation of Manoeuvres in waves. In: Proceedings of the MARINE 2015 Conference, pp. 327-338.
- Castro, A., Carrica, P.M., Stern, F., 2011. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput. Fluids 51, 35-47. https://doi.org/10.1016/j.compfluid.2011.07.005.
- Demirdzic, I., 2015. On the discretization of the diffusion term in finite-volume continuum mechanics. Numer. Heat Transf. Part B 68, 1-10. https://doi.org/10.1080/10407790.2014.985992.
- Desjardins, O., Moureau, V., Pitsch, H., 2008. An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227 (18), 8395-8416. https://doi.org/10.1016/j.jcp.2008.05.027
- Eca, L., Hoekstra, M., 2014. A procedure for the estimation of the numerical uncertainty of cfd calculations based on grid refinement studies. J. Comput. Phys. 262, 104-130. https://doi.org/10.1016/j.jcp.2014.01.006.
- Ferziger, J.H., Peric, M., 1996. Computational Methods for Fluid Dynamics. Springer.
- Huang, J., Carrica, P.M., Stern, F., 2007. Coupled ghost fluid/two-phase level set method for curvilinear body-fitted grids. Int. J. Numer. Meth. Fluids 44, 867-897. https://doi.org/10.1002/fld.1499.
- Issa, R.I., 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40-65. https://doi.org/10.1016/0021-9991(86)90099-9
-
Jacobsen, N.G., Fuhrman, D.R., Fredsoe, J., 2012. A wave generation toolbox for the open-source CFD library: OpenFoam
$^{(R)}$ . Int. J. Numer. Met. Fluids 70 (9), 1073-1088. https://doi.org/10.1002/fld.2726. - Jasak, H., 1996. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. thesis. Imperial College of Science, Technology & Medicine, London.
- Jasak, H., Weller, H., Gosman, A., 1999. High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Met. Fluids 31, 431-449. https://doi.org/10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
- Jasak, H., Vukcevic, V., Gatin, I., 2015. Numerical simulation of wave loads on static offshore structures. In: CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering, pp. 95-105.
- Juretic, F., 2017. cfMesh: Advanced Meshing Tool. cfMesh.com [Online; Accessed 22 February 2017].
- Kim, G.-H., Jun, J.-H., 2015. Numerical simulations for predicting resistance and self-propulsion performances of JBC using OpenFOAM and star-CCM+. In: Proceedings of the Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 3, pp. 285-296.
- Krasilnikov, V., 2013. Self-propulsion RANS computations with a single-screw container ship. In: Proceedings of the Third International Symposium on Marine Propulsors, pp. 430-438.
- Lalanne, B., Villegas, L.R., Tanguy, S., Risso, F., 2015. On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method. J. Comput. Phys. 301, 289-307. https://doi.org/10.1016/j.jcp.2015.08.036
- Larsson, L., Stern, F., Visonneau, M., Hirata, N., Hino, T., Kim, J. (Eds.), 2015. Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 2. NMRI (National Maritime Research Institute), Tokyo, Japan.
- Larsson, L., Stern, F., Visonneau, M., Hirata, N., Hino, T., Kim, J. (Eds.), 2015. Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 3. NMRI (National Maritime Research Institute), Tokyo, Japan.
- Lloyd's Register, 2016. A Workshop on Ship Scale Hydrodynamic Computer Simulation. http://www.lr.org/en/news-and-insight/events/ship-scale-hydrodynamics-numerical-methods-workshop.aspx [Online; Accessed 22 February 2017].
- Menter, F.R., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. Turb. Heat Mass Transf. 4, 625-632.
- Patankar, S.V., Spalding, D.B., 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15, 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
- Ponkratov, D. (Ed.), 2017. Proceedings: 2016Workshop on Ship Scale Hydrodynamic Computer Simulations. Lloyd's Register, Southampton, United Kingdom.
- Ponkratov, D., Zegos, C., 2014. Ship scale CFD self-propulsion simulation and its direct comparison with sea trial results. In: Proceedings of the International Conference on Computational and Experimental Marine Hydrodynamics (MARHY'14).
- Ponkratov, D., Zegos, C., 2015. Validation of ship scale CFD self-propulsion simulation by the direct comparison with sea trial results. In: Proceedings of the Fourth International Symposium on Marine Propulsors.
- Queutey, P., Visonneau, M., 2007. An interface capturing method for free-surface hydrodynamic flows. Comput. Fluids 36, 1481-1510. https://doi.org/10.1002/j.compfluid.2006.11.007.
- R. MPEC.245(66), 2014. Guidelines on the Method of Calculation of the Attained EEDI for New Ships, Adopted on 2 March 2012.
- Roenby, J., Bredmose, H., Jasak, H., 2016. A computational method for sharp interface advection. Open Sci. 3 (11) https://doi.org/10.1098/rsos.160405.
- Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two - Phase Flows at High Phase Fractions. Ph.D. thesis. Imperial College of Science, Technology & Medicine, London.
- Seb, B., 2017. Numerical Characterisation of a Ship Propeller. Master's thesis. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.
- Shen, Z., Wan, D., Carrica, P.M., 2015. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering. Ocean Eng. 108, 287-306. https://doi.org/10.1016/j.oceaneng.2015.07.035.
- Simonsen, C.D., Otzen, J.F., Joncquey, S., Stern, F., 2013. EFD and CFD for KCS heaving and pitching in regular head waves. J. Mar. Sci. Technol. 18, 435-459. https://doi.org/10.1007/s00773-013-0219-0.
- Stern, F., Wilson, R.V., Coleman, H.W., Paterson, E.G., 2001. Comprehensive approach to verification and validation of CFD Simulations-Part 1: methodology and procedures. J. Fluid Eng. 123 (4), 793-802. https://doi.org/10.1115/1.1412235.
- Tzabiras, G., Polyzos, S., Zarafonitis, G., 2009. Selfepropulsion simulations of passenger-Ferry ships with bow and stern propulsors. In: Proceedings of the 12th Numerical Towing Tank Symposium (NUTTS).
- Ubbink, O., Issa, R.I., 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153, 26-50. https://doi.org/10.1006/jcph.1999.6276
- van Leer, B., 1977. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276-299. https://doi.org/10.1016/0021-9991(77)90095-X
- Visonneau, M., Deng, G., Guilmineau, E., Queutey, P., Wackers, J., 2016. Local and global assessment of the flow around the Japan bulk carrier with and without energy saving devices at model and full scale. In: Proceedings of the 31st Symposium on Naval Hydrodynamics.
- Vukcevic, V., 2016. Numerical Modelling of Coupled Potential and Viscous Flow for Marine Applications - in Preparation. Ph.D. thesis. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. https://doi.org/10.13140/RG.2.2.23080.57605.
- Vukcevic, V., Jasak, H., Gatin, I., 2017. Implementation of the ghost fluid method for free surface flows in polyhedral finite volume framework. Comput. Fluids 153, 1-19. https://doi.org/10.1016/j.compfluid.2017.05.003.
- Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object oriented techniques. Comput. Phys. 12, 620-631. https://doi.org/10.1063/1.168744
- Xing-Kaeding, Y., Gatchell, S., 2015. Resistance and selfepropulsion predictions for Japan bulk carrier without and with duct using the FreSCo+ code. In: Proceedings of the Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 3, pp. 291-296.
Cited by
- Numerical Prediction of Total Resistance Using Full Similarity Technique vol.33, pp.4, 2019, https://doi.org/10.1007/s13344-019-0047-z
- Maneuvering simulation of an X-plane submarine using computational fluid dynamics vol.12, 2020, https://doi.org/10.1016/j.ijnaoe.2020.10.001
- Numerical Analysis of Full-Scale Ship Self-Propulsion Performance with Direct Comparison to Statistical Sea Trail Results vol.8, pp.1, 2020, https://doi.org/10.3390/jmse8010024
- Application Progress of Computational Fluid Dynamic Techniques for Complex Viscous Flows in Ship and Ocean Engineering vol.19, pp.1, 2019, https://doi.org/10.1007/s11804-020-00124-8
- Resistance experiments and self-propulsion estimations of Duisburg Test Case at 1/100 scale vol.67, pp.2, 2020, https://doi.org/10.1080/09377255.2020.1729454
- Resistance and wave characterizations of inland vessels in the fully-confined waterway vol.210, 2019, https://doi.org/10.1016/j.oceaneng.2020.107580
- Experimental and numerical study on the scale effect of stern flap on ship resistance and flow field vol.15, pp.9, 2019, https://doi.org/10.1080/17445302.2019.1697091
- CFD simulation of loadings on circular duct in calm water and waves vol.15, pp.suppl1, 2019, https://doi.org/10.1080/17445302.2020.1730082
- Numerical investigation on the wave interferences of submerged bodies operating near the free surface vol.13, 2019, https://doi.org/10.1016/j.ijnaoe.2021.01.002
- Numerical simulations of hydrodynamic loads and structural responses of a Pre-Swirl Stator vol.13, 2019, https://doi.org/10.1016/j.ijnaoe.2021.09.002
- Hydrodynamic Analysis of KVLCC2 Ship Sailing near Inclined Banks vol.2021, 2019, https://doi.org/10.1155/2021/6655971
- Simulation strategy of the full-scale ship resistance and propulsion performance vol.15, pp.1, 2019, https://doi.org/10.1080/19942060.2021.1974091
- Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM vol.6, pp.2, 2019, https://doi.org/10.3390/fluids6020066
- CFD Simulation for Estimating Efficiency of PBCF Installed on a 176K Bulk Carrier under Both POW and Self-Propulsion Conditions vol.9, pp.7, 2019, https://doi.org/10.3390/pr9071192
- CFD prediction of full-scale ship parametric roll in head wave vol.233, 2021, https://doi.org/10.1016/j.oceaneng.2021.109180
- Full-Scale Measurements of the Propeller Thrust during Speed Trials Using Electrical and Optical Sensors vol.11, pp.17, 2019, https://doi.org/10.3390/app11178197
- Assessment of full-scale KCS free running simulation with body-force models vol.237, 2019, https://doi.org/10.1016/j.oceaneng.2021.109570
- Hull-propeller interaction for planing boats: a numerical study vol.16, pp.9, 2019, https://doi.org/10.1080/17445302.2020.1790295
- A review on the turbulence modelling strategy for ship hydrodynamic simulations vol.241, 2019, https://doi.org/10.1016/j.oceaneng.2021.110082