• Title/Summary/Keyword: post-disaster

Search Result 251, Processing Time 0.036 seconds

Case Study on the Explosive Demolition of Steel Truss Bridge using Charge Container for Cutting Structural Steel (강재 절단용 장약용기를 이용한 철골 교량 발파해체 시공사례)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.20-33
    • /
    • 2018
  • A locally damaged structure is a structure that cannot be reused due to having parts that have lost their structural function as a result of abnormal load across the interior or exterior of the structure. The causes of the abnormal load occurrences can be classified into natural disaster and artificial disaster. Locally damaged structures caused by this abnormal load have risk factors that may lead to the possibility of additional secondary collapses, so such structures require immediate and complete dismantling. The case presented in this study involves the application of explosive demolition to a steel truss structured bridge in the Philippines that was damaged due to construction failures and the hurricane. Although shaped charges were needed in explosive demolitions, difficulties in locally obtaining such material. So, we made a charge container to charging of emulsion explosive during the explosive demolition. The explosive demolition resulted in the vertical free fall of the mid-section of the bridge and the free fall rotating of the both end section of the bridge. The neighboring posts and bridge piers did not show signs of damages, while post-demolition fragmentation of removed parts was found to be satisfactory.

The Review of Studies on Safety and Health Management System of the Specialized Construction Company (전문건설업 안전보건경영시스템 동향연구)

  • Kim, Se-hoon;Kang, Hwi-jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.41-50
    • /
    • 2020
  • The introduction, construction, and operation of the safety and health management system of specialized construction companies have a problem incurred in the cost of introducing and operating the safety system. In addition, it is difficult to establish a virtuous cycle system to build a safety system, obtain a certification, and settle in a harsh environment that does not have technical personnel in construction safety. The purpose of this paper is to investigate and review the literature related to the safety and health management system of the construction industry and to analyze various research trends such as the actual situation. Through this, it is to find ways to improve the safety and health management system level of specialized construction companies that want to build and obtain the safety and health management system of the construction industry and specialized construction companies that are carrying out the post-assessment and extension examination after obtaining the certification.

Numerical Analysis of Airborne Infection Control Performance of Germicidal Systems in a Temporary Shelter (수치해석을 이용한 임시대피소 내 공기감염확산 저감장치의 성능 분석)

  • Park, Jeongyeon;Sung, Minki;Lee, Jaewook
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • Purpose : When natural disaster occurs, the victims are evacuated to temporary shelters such as indoor gymnasiums or large space buildings until their homes are recovered. If someone in this temporary shelter is infected with an airborne infectious disease, it becomes easier for the disease to spread to the other people in the shelter than it would be under normal conditions. Therefore, temporary shelters need to provide not only water and food but also hygienic indoor conditions. Methods : In this study, the use of mechanical systems such as ultraviolet germicidal irradiation (UVGI) systems and air cleaners were simulated using numerical analysis to find out how these systems can control airborne infection in temporary shelters. An indoor gymnasium was selected as a temporary shelter for the numerical simulation model considering Korea's post-disaster response system. Influenza A virus was assumed as an airborne infectious disease and the diffusion of the virus was made by one person in the shelter. Results : The result of this study showed that the UVGI systems disinfected the virus more effectively than the air cleaners by creating a more stable airflow after the disinfection process. The air cleaners could remove the virus but since it created an unstable airflow in the temporary shelter, the virus was condensed to a certain area to show a higher virus concentration level than the source location. Implications : In the temporary shelter, it is necessary to use UVGI systems or air cleaners for hygienic indoor conditions.

Non-recursive Path Model Analysis on the Relationship between Perceived Safety Management Activities and Safety of Construction Sites (건설현장의 지각된 안전관리 활동과 안전성과의 관계에 대한 비재귀 경로모형분석)

  • Yong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.786-794
    • /
    • 2022
  • In construction sites, effective preventive safety management is required beyond post-processing safety management. Purpose: The purpose of this study is to present a model and analyze the relationship between safety management activities, safety culture key elements, safety, unsafe behavior management, and safety for autonomous and preventive safety management. Method: The relationship was analyzed by applying the survey data to the structural equation, and the path to safety outcomes from exogenous variables was explored and major issues were presented by interpreting the part suggested by the hypothesis verified by the analysis results. Result: As a result of analyzing the preliminary model and the path model, the appropriate model fit was confirmed, and the significant effect of exogenous variables on endogenous variables was confirmed. Conclusion: It is judged that it can contribute to continuously improving safety performance before safety accidents occur through safety management activities, safety and unsafe behavior management, and management of key elements of safety culture.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

A Prototype of Distributed Simulation for Facility Restoration Operation Analysis through Incorporation of Immediate Damage Assessment

  • Hwang, Sungjoo;Choi, MinJi;Starbuck, Richmond;Lee, SangHyun;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.339-343
    • /
    • 2015
  • To rapidly recover ceased functionality of a facility after a catastrophic seismic event, critical decisions on facility repair works are made within a limited period of time. However, prolonged damage assessment of facilities, due to massive damage in the surrounding region and the complicated damage judgment procedures, may impede restoration planning. To assist reliable structural damage estimation without a deep knowledge and rapid interactive analysis among facility damage and restoration operations during the approximate restoration project planning phase, we developed a prototype of distributed facility restoration simulations through the use of high-level architecture (HLA) (IEEE 1516). The simulation prototype, in which three different simulations (including a seismic data retrieval technique, a structural response simulator, and a restoration simulation module) interact with each other, enables immediate damage estimation by promptly detecting earthquake intensity and the restoration operation analysis according to estimated damage. By conducting case simulations and experiments, research outcomes provide key insights into post-disaster restoration planning, including the extent to which facility damage varies according to disaster severity, facility location, and structures. Additional insights arise regarding the extent to which different facility damage patterns impact a project's performance, especially when facility damage is hard to estimate by observation. In particular, an understanding of required type and amount of repair activities (e.g., demolition works, structural reinforcement, frame installation, or finishing works) is expected to support project managers in approximate work scheduling or resource procurement plans.

  • PDF

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng;Qian Li;Rabin Tuladhar;Feng Shi
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.379-391
    • /
    • 2024
  • The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

Development and Effect of HTE-STEAM Program: Focused on Case Study Application for Free-Learning Semester (HTE-STEAM(융합인재교육) 프로그램 개발 및 효과 : 자유학기제 수업 활용 사례를 중심으로)

  • Kim, Yonggi;Kim, Hyoungbum;Cho, Kyu-Dohng;Han, Shin
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.11 no.3
    • /
    • pp.224-236
    • /
    • 2018
  • The purpose of this study was to develop a reasoning-based HTE-STEAM program for the development of the cognitive capacity of middle school students and enhancement of their STEAM literacy, and to investigate the effectiveness of this study in the school setting. The subjects of this study were the students of two middle schools located in the central region of Korea. The students participated in the HTE-STEAM program during their free-learning semesters and 202 of them were selected by random sampling method. Main findings were as follows: First, pre- and post-HTE-STEAM program has shown a significant value in statistical verification (p<.05) and the level of logical thinking ability of the research participants improved after the class compared to before the class. Second, the paired samples t-test comparing the difference between the pre and post scores of the STEAM attitude test has shown a significant value in statistical verification (p<.05), and the HTE-STEAM program has turned out to have a positive effect on the STEAM literacy of the research participants. Third, in the HTE-STEAM satisfaction scale test, the mean value of the sub-construct stood at 3.27~4.12, showing a positive overall response. Therefore, the HTE-STEAM program under the topic of earth science of 'Disaster and Safety' developed at the final stage of this study has proven to have a positive influence on the research participants in terms of the development of cognitive capacity by reasoning and collaborative learning, an important quality of communication and consideration necessary for STEAM literacy.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.

Behavioral Change of Workers who completed Experiential Safety Training (체험식 안전교육 이수 근로자의 행동 변화 연구)

  • Choonhwan, Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.161-172
    • /
    • 2023
  • Safety education delivered to construction workers in a lecture manner has limitations in concentration and immersion, so delivery power and interest are low. In order to improve unstable behavior through education and prevent safety accidents, it is necessary to change the paradigm to hands-on education. Purpose: Experiential safety education aims to contribute to preventing accidents for construction workers by quickly recognizing risks, improving emergency response skills, and verifying the effectiveness of pre- and post-learning. Method: Based on a survey of workers who experienced the same work environment as the actual construction site, an opinion survey on the pre- and post-safety experience education and a variable measurement tool were planned, and a research hypothesis was established. Results: The Bayesian theory and MC simulation analysis were used to analyze the structural equation model, and the change in construction worker behavior was confirmed through the intended safety (A), non-experiential education in the sub-area of anxiety (B), average, standard deviation, and minimum and maximum values. Conclusion: The effect of education and industrial accidents are reduced only when construction workers are motivated to participate.