DOI QR코드

DOI QR Code

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng (The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology) ;
  • Qian Li (The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology) ;
  • Rabin Tuladhar (College of Science & Engineering, James Cook University) ;
  • Feng Shi (Ningbo Shike New Material Technology Co. Ltd)
  • Received : 2023.04.10
  • Accepted : 2023.06.21
  • Published : 2024.10.25

Abstract

The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Beijing Municipal Education Committee funding project (Grant No. KZ201810005008).

References

  1. Abdel-Jaber, H. and Glisic, B. (2019), "Monitoring of prestressing forces in prestressed concrete structures-An overview", Struct. Control. Health Monit., 26(8), e2374. http://doi.org/10.1002/stc.2374.
  2. Azad, A.K. and Hakeem, I.Y. (2014), "Flexural behavior of hybrid concrete beams reinforced with ultra-high performance concrete bars", Constr. Build. Mater., 49, 128-133. http://doi.org/10.1016/j.conbuildmat.2013.08.005.
  3. Bischoff, P.H. (2007), "Rational model for calculating deflection of reinforced concrete beams and slabs", Can. J. Civil Eng., 34(8), 992-1002. http://doi.org/10.1139/l07-020.
  4. Botte, W., Vereecken, E., Taerwe, L. and Caspeele, R. (2021), "Assessment of posttensioned concrete beams from the 1940s: Large-scale load testing, numerical analysis and Bayesian assessment of prestressing losses", Struct. Concrete, 22(3), 1500-1522. http://doi.org/10.1002/suco.202000774.
  5. CECS 38:2004 (2004), Technical Specification for Fiber Reinforced CONCRETE structures, China Engineering Construction Standardization Association, Beijing, China.
  6. Chen, A.Y., Deng, S., Gao, P., Wan, H.Y., Zhu, H. and Liu, X.Y. (2023), "Experiment study on flexural performance of concrete beams with HRB600 steel bars", J. Hefei Univ. Technol. (Nat. Sci.), 46(2), 212-220.
  7. Dadmand, B., Pourbaba, M., Sadaghian, H., Mirmiran, A. (2020), "Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC", Comput. Concrete, 26(5), 451-465. http://doi.org/10.12989/cac.2020.26.5.451.
  8. Debernardi, P.G. and Taliano, M. (2010), "Span-to-height ratio limits for prestressed concrete members", Struct. Concrete, 11(1), 35-43. http://doi.org/10.1680/stco.2010.11.1.035.
  9. Deng, L.C. (2017), "Study on the performance of partially prestressed fiber reinforced concrete beams", M.D. Dissertation, Hebei University of Technology, Hebei, China.
  10. Deng, Z.Y., Liu, X.R., Yang, X., Liang, N.H., Yan, R., Chen, P., Miao, Q.X. and Xu, Y.H. (2020), "A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads", Struct. Concrete, 22(1), 396-409. http://doi.org/10.1002/suco.202000006.
  11. Dong, J.K., Park, S.H., Ryu, G.S. and Koh, K.T. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25(11), 4144-4155. http://doi.org/10.1016/j.conbuildmat.2011.04.051.
  12. Elshahawi, M. and Batchelor, B.D. (1986), "Fatigue of partially prestressed concrete", J. Struct. Eng., 112(3), 524-537. http://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(524).
  13. Florent, B., Marchand, P., Atrach, M. and Toutlemonde, F. (2013), "Analysis of flexure-shear behavior of UHPFRC beams based on stress field approach", Eng. Struct., 56, 194-206. http://doi.org/10.1016/j.engstruct.2013.04.024.
  14. GB 50010-2015 (2015), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  15. Ghali, A. and Tadros, M.K. (1985), "Partially prestressed concrete structures", J. Struct. Eng., 111(8), 1. http://doi.org/10.1061/(ASCE)0733-9445(1985)111:8(1846).
  16. Gidrao., G.M.S., Krahl., P.A. and Carrazedo., R. (2021), "Numerical modeling and design of precast prestressed UHPFRC I beams", Rev. IBRACON Estrut. Mater., 14(3), e14310. http://doi.org/10.1590/S1983-41952021000300010.
  17. Habel, K., Viviani, M., Denarie, E. and Bruhwiler, E. (2006), "Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)", Cement Concrete Res., 36(7), 1362-1370. http://doi.org/10.1016/j.cemconres.2006.03.009.
  18. Han, J., Song, Y., Wang, L., Song, S. and Lei, B. (2014), "Steel stress redistribution and fatigue life estimation of partially prestressed concrete beams under fatigue loading", Adv. Struct. Eng., 17(2), 179-196. http://doi.org/10.1260/1369-4332.17.2.179.
  19. Holden, T., Restrepo, J. and Mander, J.B. (2003), "Seismic performance of precast reinforced and prestressed concrete walls", J. Struct. Eng., 129(3), 286-296. http://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286).
  20. JTG 3362-2018 (2018). Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts, Ministry of Transport of the People's Republic of China, Beijing, China.
  21. Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S. and Lee, B.Y. (2016), "Effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete", Compos. Struct., 145(6), 37-42. http://doi.org/10.1016/j.compstruct.2016.02.075.
  22. Khayat, K.H., Meng, W.N., Vallurupalli, K. and Teng, L. (2019), "Rheological properties of ultra-high-performance concrete - An overview", Cement Concrete Res., 124(6), 1-16. http://doi.org/10.1016/j.cemconres.2019.105828.
  23. Kromoser, B., Preinstorfer, P. and Kollegger, J. (2019), "Building lightweight structures with carbon-fiber-reinforced polymer-reinforced ultra-high-performance concrete: Research approach, construction materials, and conceptual design of three building components", Struct. Concrete, 20(2), 730-744. http://doi.org/10.1002/suco.201700225.
  24. Kusumawardaningsih, Y., Fehling, E., Ismail, M. and Aboubakr, A.a.M. (2015), "Tensile strength behavior of UHPC and UHPFRC", Procedia Eng., 125(3), 1081-1086. http://doi.org/10.1016/j.proeng.2015.11.166.
  25. Lei, J.Q., Xiao, Y., Zhang, K., Zhong-San, L.I. and Wang, Y.Y. (2013), "Test for fatigue performance of a prestressed concrete beam under variable amplitude fatigue loading", J. Vib. Shock, 32(18), 95-100. http://doi.org/10.13465/j.cnki.jvs.2013.18.031.
  26. Liu, F.Y., Xu, K., Ding, W.Q., Qiao, Y.F. and Wang, L.B. (2021), "Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete", Cement Concrete Compos., 123, 104196. http://doi.org/10.1016/j.cemconcomp.2021.104196.
  27. Liu, J.P., Hu, H.F., Li, J., Chen, Y.F. and Zhang, L. (2020), "Flexural behavior of prestressed concrete composite slab with precast inverted T-shaped ribbed panels", Eng. Struct., 215(11), 110687. http://doi.org/10.1016/j.engstruct.2020.110687.
  28. Ma, R., Guo, L.P., Ye, S.X., Sun, W. and Liu, J.P. (2019), "Influence of Hybrid fiber reinforcement on mechanical properties and autogenous shrinkage of an ecological UHPFRCC", J. Mater. Civil Eng., 31(5), 04019032. http://doi.org/10.1061/(ASCE)MT.1943-5533.0002650.
  29. Mahmud, G.H., Yang, Z. and Hassan, A.M.T. (2013), "Experimental and numerical studies of size effects of ultra high performance steel fibre reinforced concrete (UHPFRC) beams", Constr. Build. Mater., 48, 1027-1034. http://doi.org/10.1016/j.conbuildmat.2013.07.061.
  30. Mishra, O. and Singh, S.P. (2019), "An overview of microstructural and material properties of ultra-high-performance concrete", J. Sustain. Cement Based Mater., 8(2), 97-143. http://doi.org/10.1080/21650373.2018.1564398.
  31. Park, S.H., Dong, J.K., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. http://doi.org/10.1016/j.cemconcomp.2011.09.009.
  32. Porteneuve, C., Zanni, H.N., Vernet, C., Kjellsen, K.O., Korb, J.P. and Petit, D. (2001), "Nuclear magnetic resonance characterization of high- and ultrahigh-performance concrete - Application to the study of water leaching", Cement Concrete Res., 31(12), 1887-1893. http://doi.org/10.1016/s0008-8846(01)00648-2.
  33. Pourbaba, M., Joghataie, A. and Mirmiran, A. (2018), "Shear behavior of ultra-high performance concrete", Constr. Build. Mater., 183(10), 554-564. http://doi.org/10.1016/j.conbuildmat.2018.06.117.
  34. Shi, C.J., Wu, Z.M., Xiao, J.F., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: Part I. Raw materials and mixture design", Constr. Build. Mater., 101(5), 741-751. http://doi.org/10.1016/j.conbuildmat.2015.10.088.
  35. Si, J.H., Wu, L.Z. and Guo, W.J. (2021), "Axial compression of reinforced concrete columns strengthened by composite of prestressed plastic-steel strip and angle steel: An experimental study", Struct. Concrete, 22(6), 3620-3629. http://doi.org/10.1002/suco.202000786.
  36. T/CCPA 35-2022 (2022), Technical Specification for Ultra-High Performance Concrete Structures Design, China Building Material Council, Beijing, China.
  37. Xu, H.B. and Deng, Z.C. (2014), "Experimental research on flexural behavior of prestressed ultra-high performance steel fiber concrete beams", J. Build. Struct., 35(12), 58-64. http://doi.org/10.14006/j.jzjgxb.2014.12.008.
  38. Yang, I.H., Park, J., Bui, T.Q., Kim, K.C., Joh, C. and Lee, H. (2020), "An experimental study on the ductility and flexural toughness of ultra high performance concrete beams subjected to bending", Mater., 13(10), 22. http://doi.org/10.3390/ma13102225.
  39. Zdanowicz, K., Kotynia, R. and Marx, S. (2019), "Prestressing concrete members with fibre-reinforced polymer reinforcement: State of research", Struct. Concrete, 20(3), 872-885. http://doi.org/10.1002/suco.201800347.
  40. Zhang, H. (2020), "Effect of hybrid fibers on flexural and tensile properties of ultra high performance fiber-reinforced cementitious composites: experiments and calculation", J. Mater. Civil Eng., 32(10), 11. http://doi.org/10.1061/(asce)mt.1943-5533.0003102.
  41. Zhang, P., Zhao, X.D., Deng, Y. (2022), "Experimental study on deformation performance of prestressed partially steel-encased concrete composite beams", J. Civil Environ. Eng., 44(1), 105-116.