Acknowledgement
The research described in this paper was financially supported by the Beijing Municipal Education Committee funding project (Grant No. KZ201810005008).
References
- Abdel-Jaber, H. and Glisic, B. (2019), "Monitoring of prestressing forces in prestressed concrete structures-An overview", Struct. Control. Health Monit., 26(8), e2374. http://doi.org/10.1002/stc.2374.
- Azad, A.K. and Hakeem, I.Y. (2014), "Flexural behavior of hybrid concrete beams reinforced with ultra-high performance concrete bars", Constr. Build. Mater., 49, 128-133. http://doi.org/10.1016/j.conbuildmat.2013.08.005.
- Bischoff, P.H. (2007), "Rational model for calculating deflection of reinforced concrete beams and slabs", Can. J. Civil Eng., 34(8), 992-1002. http://doi.org/10.1139/l07-020.
- Botte, W., Vereecken, E., Taerwe, L. and Caspeele, R. (2021), "Assessment of posttensioned concrete beams from the 1940s: Large-scale load testing, numerical analysis and Bayesian assessment of prestressing losses", Struct. Concrete, 22(3), 1500-1522. http://doi.org/10.1002/suco.202000774.
- CECS 38:2004 (2004), Technical Specification for Fiber Reinforced CONCRETE structures, China Engineering Construction Standardization Association, Beijing, China.
- Chen, A.Y., Deng, S., Gao, P., Wan, H.Y., Zhu, H. and Liu, X.Y. (2023), "Experiment study on flexural performance of concrete beams with HRB600 steel bars", J. Hefei Univ. Technol. (Nat. Sci.), 46(2), 212-220.
- Dadmand, B., Pourbaba, M., Sadaghian, H., Mirmiran, A. (2020), "Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC", Comput. Concrete, 26(5), 451-465. http://doi.org/10.12989/cac.2020.26.5.451.
- Debernardi, P.G. and Taliano, M. (2010), "Span-to-height ratio limits for prestressed concrete members", Struct. Concrete, 11(1), 35-43. http://doi.org/10.1680/stco.2010.11.1.035.
- Deng, L.C. (2017), "Study on the performance of partially prestressed fiber reinforced concrete beams", M.D. Dissertation, Hebei University of Technology, Hebei, China.
- Deng, Z.Y., Liu, X.R., Yang, X., Liang, N.H., Yan, R., Chen, P., Miao, Q.X. and Xu, Y.H. (2020), "A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads", Struct. Concrete, 22(1), 396-409. http://doi.org/10.1002/suco.202000006.
- Dong, J.K., Park, S.H., Ryu, G.S. and Koh, K.T. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25(11), 4144-4155. http://doi.org/10.1016/j.conbuildmat.2011.04.051.
- Elshahawi, M. and Batchelor, B.D. (1986), "Fatigue of partially prestressed concrete", J. Struct. Eng., 112(3), 524-537. http://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(524).
- Florent, B., Marchand, P., Atrach, M. and Toutlemonde, F. (2013), "Analysis of flexure-shear behavior of UHPFRC beams based on stress field approach", Eng. Struct., 56, 194-206. http://doi.org/10.1016/j.engstruct.2013.04.024.
- GB 50010-2015 (2015), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
- Ghali, A. and Tadros, M.K. (1985), "Partially prestressed concrete structures", J. Struct. Eng., 111(8), 1. http://doi.org/10.1061/(ASCE)0733-9445(1985)111:8(1846).
- Gidrao., G.M.S., Krahl., P.A. and Carrazedo., R. (2021), "Numerical modeling and design of precast prestressed UHPFRC I beams", Rev. IBRACON Estrut. Mater., 14(3), e14310. http://doi.org/10.1590/S1983-41952021000300010.
- Habel, K., Viviani, M., Denarie, E. and Bruhwiler, E. (2006), "Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)", Cement Concrete Res., 36(7), 1362-1370. http://doi.org/10.1016/j.cemconres.2006.03.009.
- Han, J., Song, Y., Wang, L., Song, S. and Lei, B. (2014), "Steel stress redistribution and fatigue life estimation of partially prestressed concrete beams under fatigue loading", Adv. Struct. Eng., 17(2), 179-196. http://doi.org/10.1260/1369-4332.17.2.179.
- Holden, T., Restrepo, J. and Mander, J.B. (2003), "Seismic performance of precast reinforced and prestressed concrete walls", J. Struct. Eng., 129(3), 286-296. http://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286).
- JTG 3362-2018 (2018). Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts, Ministry of Transport of the People's Republic of China, Beijing, China.
- Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S. and Lee, B.Y. (2016), "Effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete", Compos. Struct., 145(6), 37-42. http://doi.org/10.1016/j.compstruct.2016.02.075.
- Khayat, K.H., Meng, W.N., Vallurupalli, K. and Teng, L. (2019), "Rheological properties of ultra-high-performance concrete - An overview", Cement Concrete Res., 124(6), 1-16. http://doi.org/10.1016/j.cemconres.2019.105828.
- Kromoser, B., Preinstorfer, P. and Kollegger, J. (2019), "Building lightweight structures with carbon-fiber-reinforced polymer-reinforced ultra-high-performance concrete: Research approach, construction materials, and conceptual design of three building components", Struct. Concrete, 20(2), 730-744. http://doi.org/10.1002/suco.201700225.
- Kusumawardaningsih, Y., Fehling, E., Ismail, M. and Aboubakr, A.a.M. (2015), "Tensile strength behavior of UHPC and UHPFRC", Procedia Eng., 125(3), 1081-1086. http://doi.org/10.1016/j.proeng.2015.11.166.
- Lei, J.Q., Xiao, Y., Zhang, K., Zhong-San, L.I. and Wang, Y.Y. (2013), "Test for fatigue performance of a prestressed concrete beam under variable amplitude fatigue loading", J. Vib. Shock, 32(18), 95-100. http://doi.org/10.13465/j.cnki.jvs.2013.18.031.
- Liu, F.Y., Xu, K., Ding, W.Q., Qiao, Y.F. and Wang, L.B. (2021), "Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete", Cement Concrete Compos., 123, 104196. http://doi.org/10.1016/j.cemconcomp.2021.104196.
- Liu, J.P., Hu, H.F., Li, J., Chen, Y.F. and Zhang, L. (2020), "Flexural behavior of prestressed concrete composite slab with precast inverted T-shaped ribbed panels", Eng. Struct., 215(11), 110687. http://doi.org/10.1016/j.engstruct.2020.110687.
- Ma, R., Guo, L.P., Ye, S.X., Sun, W. and Liu, J.P. (2019), "Influence of Hybrid fiber reinforcement on mechanical properties and autogenous shrinkage of an ecological UHPFRCC", J. Mater. Civil Eng., 31(5), 04019032. http://doi.org/10.1061/(ASCE)MT.1943-5533.0002650.
- Mahmud, G.H., Yang, Z. and Hassan, A.M.T. (2013), "Experimental and numerical studies of size effects of ultra high performance steel fibre reinforced concrete (UHPFRC) beams", Constr. Build. Mater., 48, 1027-1034. http://doi.org/10.1016/j.conbuildmat.2013.07.061.
- Mishra, O. and Singh, S.P. (2019), "An overview of microstructural and material properties of ultra-high-performance concrete", J. Sustain. Cement Based Mater., 8(2), 97-143. http://doi.org/10.1080/21650373.2018.1564398.
- Park, S.H., Dong, J.K., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. http://doi.org/10.1016/j.cemconcomp.2011.09.009.
- Porteneuve, C., Zanni, H.N., Vernet, C., Kjellsen, K.O., Korb, J.P. and Petit, D. (2001), "Nuclear magnetic resonance characterization of high- and ultrahigh-performance concrete - Application to the study of water leaching", Cement Concrete Res., 31(12), 1887-1893. http://doi.org/10.1016/s0008-8846(01)00648-2.
- Pourbaba, M., Joghataie, A. and Mirmiran, A. (2018), "Shear behavior of ultra-high performance concrete", Constr. Build. Mater., 183(10), 554-564. http://doi.org/10.1016/j.conbuildmat.2018.06.117.
- Shi, C.J., Wu, Z.M., Xiao, J.F., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: Part I. Raw materials and mixture design", Constr. Build. Mater., 101(5), 741-751. http://doi.org/10.1016/j.conbuildmat.2015.10.088.
- Si, J.H., Wu, L.Z. and Guo, W.J. (2021), "Axial compression of reinforced concrete columns strengthened by composite of prestressed plastic-steel strip and angle steel: An experimental study", Struct. Concrete, 22(6), 3620-3629. http://doi.org/10.1002/suco.202000786.
- T/CCPA 35-2022 (2022), Technical Specification for Ultra-High Performance Concrete Structures Design, China Building Material Council, Beijing, China.
- Xu, H.B. and Deng, Z.C. (2014), "Experimental research on flexural behavior of prestressed ultra-high performance steel fiber concrete beams", J. Build. Struct., 35(12), 58-64. http://doi.org/10.14006/j.jzjgxb.2014.12.008.
- Yang, I.H., Park, J., Bui, T.Q., Kim, K.C., Joh, C. and Lee, H. (2020), "An experimental study on the ductility and flexural toughness of ultra high performance concrete beams subjected to bending", Mater., 13(10), 22. http://doi.org/10.3390/ma13102225.
- Zdanowicz, K., Kotynia, R. and Marx, S. (2019), "Prestressing concrete members with fibre-reinforced polymer reinforcement: State of research", Struct. Concrete, 20(3), 872-885. http://doi.org/10.1002/suco.201800347.
- Zhang, H. (2020), "Effect of hybrid fibers on flexural and tensile properties of ultra high performance fiber-reinforced cementitious composites: experiments and calculation", J. Mater. Civil Eng., 32(10), 11. http://doi.org/10.1061/(asce)mt.1943-5533.0003102.
- Zhang, P., Zhao, X.D., Deng, Y. (2022), "Experimental study on deformation performance of prestressed partially steel-encased concrete composite beams", J. Civil Environ. Eng., 44(1), 105-116.