• 제목/요약/키워드: positive linear operator

검색결과 42건 처리시간 0.022초

RANGE INCLUSION OF TWO SAME TYPE CONCRETE OPERATORS

  • Nakazi, Takahiko
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1823-1830
    • /
    • 2016
  • Let H and K be two Hilbert spaces, and let A and B be two bounded linear operators from H to K. We are interested in $RangeB^*{\supseteq}RangeA^*$. It is well known that this is equivalent to the inequality $A^*A{\geq}{\varepsilon}B^*B$ for a positive constant ${\varepsilon}$. We study conditions in terms of symbols when A and B are singular integral operators, Hankel operators or Toeplitz operators, etc.

N-SUPERCYCLICITY OF AN A-m-ISOMETRY

  • HEDAYATIAN, KARIM
    • 호남수학학술지
    • /
    • 제37권3호
    • /
    • pp.281-285
    • /
    • 2015
  • An A-m-isometric operator is a bounded linear operator T on a Hilbert space $\mathcal{H}$ satisfying $\sum\limits_{k=0}^{m}(-1)^{m-k}T^{*^k}AT^k=0$, where A is a positive operator. We give sufficient conditions under which A-m-isometries are not N-supercyclic, for every $N{\geq}1$; that is, there is not a subspace E of dimension N such that its orbit under T is dense in $\mathcal{H}$.

BEREZIN NUMBER INEQUALITIES VIA YOUNG INEQUALITY

  • Basaran, Hamdullah;Gurdal, Mehmet
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.523-537
    • /
    • 2021
  • In this paper, we obtain some new inequalities for the Berezin number of operators on reproducing kernel Hilbert spaces by using the Hölder-McCarthy operator inequality. Also, we give refine generalized inequalities involving powers of the Berezin number for sums and products of operators on the reproducing kernel Hilbert spaces.

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS

  • Feki, Kais
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1385-1405
    • /
    • 2021
  • Let A be a positive bounded linear operator acting on a complex Hilbert space (𝓗, ⟨·,·⟩). Let ωA(T) and ║T║A denote the A-numerical radius and the A-operator seminorm of an operator T acting on the semi-Hilbert space (𝓗, ⟨·,·⟩A), respectively, where ⟨x, y⟩A := ⟨Ax, y⟩ for all x, y ∈ 𝓗. In this paper, we show with different techniques from that used by Kittaneh in [24] that $$\frac{1}{4}{\parallel}T^{{\sharp}_A}T+TT^{{\sharp}_A}{\parallel}_A{\leq}{\omega}^2_A(T){\leq}\frac{1}{2}{\parallel}T^{{\sharp}_A}T+TT^{{\sharp}_A}{\parallel}_A.$$ Here T#A denotes a distinguished A-adjoint operator of T. Moreover, a considerable improvement of the above inequalities is proved. This allows us to compute the 𝔸-numerical radius of the operator matrix $\(\array{I&T\\0&-I}\)$ where 𝔸 = diag(A, A). In addition, several A-numerical radius inequalities for semi-Hilbert space operators are also established.

SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS

  • SHEN, JUNKI;ZUO, FEI
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권3호
    • /
    • pp.275-283
    • /
    • 2015
  • Let T be a bounded linear operator on a complex Hilbert space H. For a positive integer k, an operator T is said to be a k-quasi-2-isometric operator if T∗k(T∗2T2 − 2TT + I)Tk = 0, which is a generalization of 2-isometric operator. In this paper, we consider basic structural properties of k-quasi-2-isometric operators. Moreover, we give some examples of k-quasi-2-isometric operators. Finally, we prove that generalized Weyl’s theorem holds for polynomially k-quasi-2-isometric operators.

On Approximation by Post-Widder and Stancu Operators Preserving x2

  • Rempulska, Lucyna;Skorupka, Mariola
    • Kyungpook Mathematical Journal
    • /
    • 제49권1호
    • /
    • pp.57-65
    • /
    • 2009
  • In the papers [5]-[7] was examined approximation of functions by the modified Sz$\'{a}$sz-Mrakyan operators and other positive linear operators preserving $e_2(x)=x^2$. In this paper we introduce the Post-Widder and Stancu operators preserving $x^2$ in polynomial weighted spaces. We show that these operators have better approximation properties than classical Post-Widder and Stancu operators.