• 제목/요약/키워드: portfolio Selection

검색결과 108건 처리시간 0.025초

A Portfolio Model for National IT R&D Strategy Project Selection Methods

  • Ryu, Dong-Hyun;Lee, Woo-Jin
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.491-499
    • /
    • 2011
  • In this paper, we offer a new strategic portfolio model for national IT R&D project selection in Korea. A risk and return (R-R) portfolio model was developed using an objectively quantified index on the two axes of risk and return, in order to select a strategic project and allocate resources in compliance with a national IT R&D strategy. We strategize using the R-R portfolio model to solve the non-strategy and subjectivity problems of the existing national R&D project selection model. We also use the quantified evaluation index of the IT technology road map (TRM) and the technical level reports (TLR) for the subjectivity of project selection, and try to discover the weights using the analytic hierarchy process (AHP). In addition, we intend to maximize the chance for a successful national IT R&D project, by selecting a strategic portfolio project and balancing the allocation of resources effectively and objectively.

추적 신호를 적용한 마코위츠 포트폴리오 선정 모형의 종목 선정 능력 향상에 관한 연구 (Application of Tracking Signal to the Markowitz Portfolio Selection Model to Improve Stock Selection Ability by Overcoming Estimation Error)

  • 김영현;김홍선;김성문
    • 한국경영과학회지
    • /
    • 제41권3호
    • /
    • pp.1-21
    • /
    • 2016
  • The Markowitz portfolio selection model uses estimators to deduce input parameters. However, the estimation errors of input parameters negatively influence the performance of portfolios. Therefore, this model cannot be reliably applied to real-world investments. To overcome this problem, we suggest an algorithm that can exclude stocks with large estimation error from the portfolio by applying a tracking signal to the Markowitz portfolio selection model. By calculating the tracking signal of each stock, we can monitor whether unexpected departures occur on the outcomes of the forecasts on rate of returns. Thereafter, unreliable stocks are removed. By using this approach, portfolios can comprise relatively reliable stocks that have comparatively small estimation errors. To evaluate the performance of the proposed approach, a 10-year investment experiment was conducted using historical stock returns data from 6 different stock markets around the world. Performance was assessed and compared by the Markowitz portfolio selection model with additional constraints and other benchmarks such as minimum variance portfolio and the index of each stock market. Results showed that a portfolio using the proposed approach exhibited a better Sharpe ratio and rate of return than other benchmarks.

Portfolio Optimization with Groupwise Selection

  • Kim, Namhyoung;Sra, Suvrit
    • Industrial Engineering and Management Systems
    • /
    • 제13권4호
    • /
    • pp.442-448
    • /
    • 2014
  • Portfolio optimization in the presence of estimation error can be stabilized by incorporating norm-constraints; this result was shown by DeMiguel et al. (A generalized approach to portfolio optimization: improving performance by constraining portfolio norms, Management Science, 5, 798-812, 2009), who reported empirical performance better than numerous competing approaches. We extend the idea of norm-constraints by introducing a powerful enhancement, grouped selection for portfolio optimization. Here, instead of merely penalizing norms of the assets being selected, we penalize groups, where within a group assets are treated alike, but across groups, the penalization may differ. The idea of groupwise selection is grounded in statistics, but to our knowledge, it is novel in the context of portfolio optimization. Novelty aside, the real benefits of groupwise selection are substantiated by experiments; our results show that groupwise asset selection leads to strategies with lower variance, higher Sharpe ratios, and even higher expected returns than the ordinary norm-constrained formulations.

한국 주식시장에서 비선형계획법을 이용한 마코위츠의 포트폴리오 선정 모형의 투자 성과에 관한 연구 (Investment Performance of Markowitz's Portfolio Selection Model in the Korean Stock Market)

  • 김성문;김홍선
    • 경영과학
    • /
    • 제26권2호
    • /
    • pp.19-35
    • /
    • 2009
  • This paper investigated performance of the Markowitz's portfolio selection model with applications to Korean stock market. We chose Samsung-Group-Funds and KOSPI index for performance comparison with the Markowitz's portfolio selection model. For the most recent one and a half year period between March 2007 and September 2008, KOSPI index almost remained the same with only 0.1% change, Samsung-Group-Funds showed 20.54% return, and Markowitz's model, which is composed of the same 17 Samsung group stocks, achieved 52% return. We performed sensitivity analysis on the duration of financial data and the frequency of portfolio change in order to maximize the return of portfolio. In conclusion, according to our empirical research results with Samsung-Group-Funds, investment by Markowitz's model, which periodically changes portfolio by using nonlinear programming with only financial data, outperformed investment by the fund managers who possess rich experiences on stock trading and actively change portfolio by the minute-by-minute market news and business information.

R&D Project Portfolio 선정 문제 (R&D Project Portfolio Selection Problem)

  • 안태호;김명관
    • 경영과학
    • /
    • 제25권1호
    • /
    • pp.1-9
    • /
    • 2008
  • This paper investigates the R&D project portfolio selection problem. Despite its importance and impact on real world projects, there exist few practical techniques that help construct an non-dominated portfolio for a decision makers satisfaction. One of the difficulties constructing the portfolio is that such project portfolio problem is, in nature, a multi-attribute decision-making problem, which is an NP-hard class problem. This paper investigates the R&D project portfolio selection problem. Despite its importance and impact on real world projects, there exist few practical techniques that help construct an non-dominated portfolio for a decision makers satisfaction. One of the difficulties constructing the portfolio is that such project portfolio problem is, in nature, a multi-attribute decision-making problem, which is an NP-hard class problem. In order to obtain the non-dominated portfolio that a decision maker or a user is satisfied with, we devise a user-interface algorithm, in that the user provides the maximum/minimum input values for each project attribute. Then the system searches the non-dominated portfolio that satisfies all the given constraints if such a portfolio exists. The process that the user adjusts the maximum/minimum values on the basis of the portfolio found continues repeatedly until the user is optimally satisfied with. We illustrate the algorithm proposed, and the computational results show the efficacy of our procedure.

외환 시장 포트폴리오 선정 모형과 투자 알고리즘 개발 및 성과평가 (Development and Evaluation of a Portfolio Selection Model and Investment Algorithm in Foreign Exchange Market)

  • 최재호;정종빈;김성문
    • 한국경영과학회지
    • /
    • 제39권2호
    • /
    • pp.83-95
    • /
    • 2014
  • In this paper, we develop a portfolio selection model that can be used to invest in markets with margin requirements such as the foreign exchange market. An investment algorithm to implement the proposed portfolio selection model based on objective historical data is also presented. We further conduct empirical analysis on the performance of a hypothetical investment in the foreign exchange market, using the proposed portfolio selection model and investment algorithm. Using 7 currency pairs that recorded the highest trading volume in the foreign exchange market during the most recent 10 years, we compare the performance of 1) the Dollar Index, 2) a 1/N Portfolio which equally allocates capital to all N assets considered for investment, and 3) a hypothetical investment portfolio selected and managed according to the portfolio selection model and investment algorithm proposed in this paper. Performance is compared in terms of accumulated returns and Sharpe ratios for the 10-year period from January 2003 to December 2012. The results show that the hypothetical investment portfolio outperforms both benchmarks, with superior performance especially during the period following financial crisis. Overall, this paper suggests that a mathematical approach for selecting and managing an optimal investment portfolio based on objective data can achieve outstanding performance in the foreign exchange market.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • 제30권1호
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS

  • Jang, Bong-Gyu
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.139-150
    • /
    • 2007
  • We investigate an optimal portfolio selection problem with transaction costs when an illiquid asset pays cash dividends and there are constraints on the illiquid asset holding. We provide closed form solutions for the problem, and by using these solutions we illustrate interesting features of optimal policies.