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OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION
COSTS WHEN AN ILLIQUID ASSET PAYS CASH
DIVIDENDS

BonG-GYU JaNG

ABSTRACT. We investigate an optimal portfolio selection problem with
transaction costs when an illiquid asset pays cash dividends and there are
constraints on the illiquid asset holding. We provide closed form solutions
for the problem, and by using these solutions we illustrate interesting
features of optimal policies.

1. Introduction

Consumption and portfolio optimization has been a central theme in finan-
cial research. This is because the optimization of consumption over lifetime
under given constraints is the supreme objective of economic agents and the
financial services industry exists to help them to find efficient way of financing
optimized consumption. Due to development of continuous time finance theory
it seems fair to say that we now understand the optimization problem in the
absence of market frictions {e.g. taxes or transaction costs) pretty well (see [4],
[12] and [13]). However, our knowledge about the consumption and investment
problem in the presence of market frictions is still limited, because market
frictions make it impossible or suboptimal for an investor to re-balance her
portfolio continuously and this fact often prohibits a researcher from getting
an explicit analytic solution for the investor’s problem (see [5] and [6]).

In this note we investigate the optimal portfolio selection problem in the
presence of transaction costs. Constantinides [3] started investigation of the
problem in continuous time and showed that optimal strategy involves non-
trading of an illiquid asset over a certain range of the ratio between the illiquid
asset value and the liquid asset value. Davis and Norman [5] have succeeded in
deriving a fully optimal strategy for the problem and providing a verification of
optimality of their strategy. Liu and Loewenstein [11] have recently derived an
optimal strategy analytically by considering an investor’s problem in which the
investor optimizes her utility of terminal wealth where her terminal time arrives
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randomly according to an exponential distribution. This note extends research
by Constantinides and Liu and Loewenstein to include the case where an illiquid
asset pays a stream of cash dividends and there are constraints on illiquid asset
holdings. When there is a cost for trading an asset and consumption can only
be purchased with the liquid asset, payment of cash dividends by the illiquid
asset is expected to increase the attractiveness of the asset, and thereby increase
the demand for the asset. We investigate this issue in this note.

We will treat four different models in this note:

Model 1. considers an investor who has a utility function for her bequest
with a random investment horizon, which is exponentially distributed,

Model 2. considers an investor who has utility function for her consumption
stream with an infinite investment horizon,

Model 3. is a general model containing both Model 1 and Model 2 as
special cases, and

Model 4. is a model where the constraint ‘investing on margin’ described
in [8] is added to Model 3.

We obtain closed-form solutions to the free boundary value problems arising
from these models. Also by using these closed-form solutions, we illustrate
interesting features of optimal policies.

2. Models and results
2.1. General setting

‘We consider a financial market where an investor can buy and sell two assets
- one liquid asset {bond) and one illiquid asset (stock). The liquid asset is a risk-
free asset with continuously compounded interest rate r > 0 and the illiquid
asset is a risky asset. The investor can buy the illiquid asset at the ask price
(1+ 6)8;, and sell it at the bid price (1 — «)S;, where 0 < 6, < 1 are the
transaction cost rates.

Throughout this note, assume all uncertainty is modelled by a probability
space (2, F, P) and a filtration {F;} which satisfies the usual conditions. We
assume that the price S; of the illiquid asset evolves according to the following
stochastic differential equation:

dSt = /Lstdt + O'StdBt,

where p and o are positive constants and g4 > r. B; is a standard one-
dimensional Brownian motion which is adapted to the filtration {F;}.

Assume that the illiquid asset pays cash dividends continuously with a rate
equal to §. The investor invests an amount x; in the liquid asset and an amount
y¢ in the illiquid asset at time ¢. In order to simplify our analysis we assume
the following borrowing constraint on the liquid asset

CEtZO, VtZO,
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although there is no difficulty for our analysis if it is replaced by the solvency
condition
x4+ (1 —a)y, >0, vVt > 0.

Note that the fact p > r guarantees y; > 0 in optimum, as seen in [11].

2.2. Model 1: utility for bequest

Assume that the investor has an uncertain lifetime 7 which is exponentially
distributed with parameter A, i.e.,

P{r € dt} = dexp{—At)dt.
Therefore, the investor’s average lifetime is 1/X and the variance of her lifetime
is 1/A2 as seen in [2]. Also assume that this uncertain lifetime is independent

of the illiquid stock process. Then the equations describing the evolutions of
xz; and y; are

(1) dzy = rzydt + dypdt — (1 + 60)dLy + (1 — @)dUy, 20 =2

(2) dy, = pyedt + oy, dBy + dLy — dUy, yo =y,

where L; and U; represent the cumulative purchase and sale of stock on time
interval [0, t], respectively. These are nondecreasing, right continuous, adapted
to {F:}, and satisfying L(0) = U(0) = 0. Let A(z,y) be the set of admissible
policies (L, U) that satisly equations (1) and (2).

Under this set-up, the investor’s problem is to maximize

Bl(zr + (1 —a)y:)'7/(1 = )],

by choosing an admissible policy (L,U). Here, 7y is the coefficient of the in-
vestor’s relative risk aversion satisfying v > 0, v # 1. The investor’s value
function is defined as

(SC-,- + (1 - a)y‘r)l_’y}
1—7 '

By using the distribution of uncertain lifetime 7, we can rewrite this equation

as

(3) ’U(CL' y) — Sup E[/‘x’ e—)\t )\(:Et + (]. - Ol)yt)l_’Y dt] .
’ (LU)eA(zy) .LJo 11—~

Finally we assume that the investor’s initial holdings in bond and stock are
constrained to lie in the first quadrant

F={(z,y) eR?:2>0, y >0}

Then it is well-known that v is concave, strictly increasing and homothetic in
F, that is, homogeneous of degree 1 — . (See Theorem 1 in [10], pp.155.)

As seen in [5], F splits into three regions, buy region (B), sell region (S} and
no-transaction region (NT'), and the optimal transaction strategies are bang-
bang, namely, buying and selling the stock either takes place at a maximum

v(z,y) = sup E[
(L.U)eA(z.y)
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FiGURE 1. the regions S, B, NT, and I, zj, 27

rate in S and B or not at all in NT. The boundaries of these regions are
straight lines through the origin. Set d¢(0p) to be such straight line between
S (B, resp.) and NT.

In NT, we obtain the Hamilton-Jacobi-Bellman (HJB) equation of the value
function v in (3). The HIB equation takes the following form

1 A 1-— 1=y
(@) Lo%Pu + (e + 6y + g, — o+ 2ETLZY)

3 T =0.
In S we obtain
(5) (1-a)vs =,
and in B,
(6) (14 0)vg = vy,

_ 9 _ 90 _

Here, v, = 5%, vy = 5y and vyy = 53.

The homogeneity of v implies that v can be expressed by using a one-variable
function ¢ as follows:

_ T
(7) U(:L‘,y) =y1 71;[}(5)’
50 we can treat only the straight line .
l={(z,y) €R*:y=1, z>0}

instead of the whole first quadrant F. By dg and 95, the line [ is divided into
three open intervals, whose z-coordinates are defined by (0, zr), (z7,27) and
(21, 00), respectively. (See Figure 1.)

Therefore, if we let z; = 24/y: and z = z, we can rewrite equations (4), (5)
and (6) as the following simple ordinary differential equation (ODE):

(z+1—a)t-7

8) B2y (2) + Przy(2) + 8¢/ (2) + Bo(2) + A 1=

:0’
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where 2 = 302, b1 = y0? = (u—71), Bo = 30%y(y = 1)+ u(l—9) — A, if
z € (21, 21),

(9) (z+1=a)¢'(2) = (1= M(2), if z € (0,21),

(10) (z+ 1+ 0¥ (2) = (1 —y)¥(2), if z € (21, 0).
Finally, note that the investor’s optimal portfolio choice problem has become

the free boundary value problem with free boundaries z; and zy. By the smooth

pasting conditions, we know that the solution of the problem must be in the

class of C?-functions. Equation (8) becomes

Mz+1-a)t™

B2z?(1 — ) =0

(1) () +az9/ () + b (2) — cop(2) +

where a = 31 /B2, b=4/82 and ¢ = ~0y/ 2.

Theorem 2.1. Suppose (a — 1)? + 4c > 0 is not a square. Then the general
solution of the second order ODE (8) is

Ciip1(2) + Covpz2(2) + 9p(2), for some constants C1 and Cy,
where

N-

(12) di(z) = M(N~,2N~+2—a,b/z)- (g)
Yalz) = M(N™,2N*+2—a,b/z)- (2>N+

for N¥f = 1(a—1+/(a—1)2+4c), and
Pp(2) = T (®)a(2) — () () A+ 1 - )7
g 2 V1(Ea(t) —ha(t)pp(t)  Ba(l — )2

Here, the function M(-,-,-} is the confluent hypergeometric function, i.e., the
Kummer function (see in [14]).

dt.

Proof. We guess a homogeneous solution of (11)

w0=(2)" 1)
with some function f. Then, after some calculations, we obtain
V'(2) +az(z) +by(2) — cpi(e)
= —;&(g)N [(b’N+ (c+(a—1- N)N)z)zf s
+b<(b ta-2- zN)z)f'(g) - bf"(g)g .
Ifc+(a—1-N)N=0,ie, N=1(a—1%+/(a—1)%+4c),

s -4 (8 (2) - e 2-ar (8) - b (2]

28 \z z z
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Also if we let f(z) = M(N,2N +2—a, z), we know that it satisfies the Kummer
differential equation
b b /b (b b by
Ni(3) 450 () - e re-ar (D) - 1 (5) =0
Thus we have found two homogeneous solutions. A general solution is obtained

immediately by using the method of variation of parameters. We refer to [1]
for this method. |

In Theorem 2.1, the assumptions for (@ — 1)? + 4c are necessary in order
to get real N* and guarantee the existence of the function M. The following
corollary can immediately be derived from the theorem.

Corollary 2.2. Suppose oll assumptions in Theorem 2.1 are valid. If 0 <
21 < 27 < 00, then ¢ is of the following form,

A(—Z+—11__~°‘)1—_1 fO0<z< 2
(13) Y(2) = Cii(2) + Cota(2) +p(2) if zr <z<zr
gttt if 2> 2
11—y = <T

for siz constants A, B,C1,Cs, 21 and 2p.

Remark 2.3. The six unknowns of constants A, B, Cy,C; and free boundaries
z7, zr can be determined by C2-conditions at the free boundaries (thus they are
six). We call these the smooth pasting conditions or super contact conditions,
which are minutely described in [7]. Using these conditions, we can derive six
algebraic equations with respect to the six unknowns and these can be solved
numerically. The argument similar to this can be shown in [11]. Furthermore,
the argument can be used to determine the unknowns described in Corollary
2.4 (Section 2.3) and Corollary 2.6 (Section 2.4).

If 27 is infinite, we need two more limiting conditions as seen in Theorem
1 in [11]. The reader can easily find such conditions. Also in [11], Liu and
Loewenstein have mentioned that they obtained a closed-form solution of the
problem. But they have not shown it explicitly in their article, as we do here.

2.3. Model 2: utility for consumption

Now we explore a model, where the investor has an infinite investment hori-
zon and consume continuously with rate ¢, at time ¢. Then the equation de-
scribing the evolution of z; is

(14) dzy = ragdt — cdt + Sydt — (14 0)dLy + (1 — a)dUy, 2o = 1w,

and that of y; is as in (2). Assume that the set A(z,y) of admissible policies
(L,U) satisfies equations (2) and (14), and the initial endowment (z,y) is in
F.
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In this model, the investor’s problem is to maximize

where p > 0 is her subjective discount rate. The investor’s value function is
defined in the same way as in the previous section, i.e., it is the supremum of the
investor’s utility obtainable with an admissible policy and can be considered
as maximum happiness obtained from discounted consumption stream over the
investment horizon.

In his seminal paper [3] Constantinides considered only the following con-
sumption policies: an investor’s consumption rate is a constant fraction of her
liquid asset holding. Following him, we assume

(15) e =k for 0 <k < 1.

Davis and Norman [5] has shown that the consumption policy is a suboptimal
policy if we think of ¢; as a control variable. However, we make the assumption
to derive a closed-form solution.

The optimal policy is also a bang-bang policy and the HJB equation in the
NT region becomes

1 1—-v
502y2vyy + [(r — k) + ylvy + pyvy — pv + —(Ti = 0,
and the change of variable formula (7) yields
21 ’ / (k2)=7
Baz*" (2) + Brzy’(2) + 0¥ (2) + Lo (z) + iy = 0,

where (redefined) parameters G = 302, 01 = 0> —(u—7+kK), fo = 30
1)+ pu(l — ) — p, if z € (21, 2r). Also ¥(z) satisfies (9) on (0, z;) and (10) on
2.1

Corollary 2.4. Suppose a = [1/B2, b = §/82 and ¢ = —By/F2 and all as-
sumptions in Theorem 2.1 are valid. If 0 < z; < zp < oo, 1 is of the same
form as in (13), where 11 and 2 are also as in (12) and

boe) = [ @) i (@at) ()
" o VLO2(t) — P (P5(2) Ba(l — 7)E2

Remark 2.5. If we think of ¢; in the class of consumption rates of the form
(15) as a control variable in this problem, we may obtain the value function by
finding & which maximizes 1(z) for all z € [0, 00). But proving the existence of
such a global constant « is still an open problem. Constantinides [3] has calcu-
lated x which maximizes 1(zpr) where zjps is the optimal portfolio proportion
x/y in the absence of transaction costs.

dt.




146 BONG-GYU JANG

2.4. Model 3: a general model

Assume that the set A(z,y) of admissible policies (L, U) that satisfy equa-
tions (2) and (14), (z,y) € F, and the consumption rate c; follows (15). The
value function of this model is

( ) [ o0 (p+>\)t(( ) Cz_’)’
v(z,y) = sup B / < e
(LU)EA(z,y) 0 b
1—a)y)' ™
+€/\($t+(1_:)yt) )dt] for 0 <e <1,

where p is a subjective time discount rate and A a mortality rate. Note that
utility of bequest with weight € and utility of consumption with weight (1 —¢)
compose the investor’s utility function. The reader also can find this type of
utility function in [9]. Following the argument in subsection 2.2 or 2.3, we can
obtain the corollary below. Here, f2 = 102, By = y0? = (u—r+ &), Bo =

2
30y =) +pd-7)-p—A

Corollary 2.6. Suppose a = ($1/82, b = 8/82 and ¢ = —fo/B2 and all as-
sumptions in Theorem 2.1 are valid. If 0 < z; < zp < o0, ¥ is of the same
form as in (13), where 11 and 2 are also in (12) and

P (a(2) — Pu(2)e(t) (L—e)(kt)' T +er(t+1—a)™”

Vo) = | B 000 = (OB Bl =) ar

2.5. Model 4: with a portfolio constraint

In Model 4 we add a portfolio constraint to Model 3. The constraint is given
by the requirement that a constant fraction 0 < 1 < 1 of the investor’s total
wealth is the maximum amount that can be invested in the illiquid asset, more
specifically,

1
(16) . < n(zy + (1 — a@)ye) or equivalently z, > ” +a—1forall £ > 0.

This is a special case of the restriction given in {8]. Note that the investor’s
initial endowment (z,y) € F may not satisfy the constraint, that is, (z,y) €
{(a,b) € F: b>n(a+ (1 —a)b)}. If so, the initial transaction should contain
the policy of selling the illiquid asset at a maximum speed so that the investor’s
portfolio satisfies (16), as well as a bang-bang policy.

Let % be (1/n+ a — 1) in (16). If 2} is a sell boundary in Corollary 2.6 and
7} < 2z}, then the optimal policy does not change at all, since the sell region
in the absence of the portfolio constraint contains the whole restricted area.
Otherwise, the sell boundary should be 7. According to the argument in [7], the
value function satisfies only the first-derivative continuity, derived from value
matching condition, at z = 4.
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Fi1cURE 2. The ratio of the investor’s holdings of the illiguid
asset at the sell boundary {the solid line} and at buy boundary
{the dotted line) to her liguidated wealth as a function of the
dividend rate in Model 1, for parameters u+4§ = 0.16, ¢ = 0.2,
=01 v=2,r=01, and § = o = 0.0L.

Corollary 2.7. Suppose all assumptions in Corollary 2.6 are valid.

(a) Assume that z} is the sell boundary in Corollary 2.6. If § < 27, ¢ is
exactly the same as in Corollary 2.6.

(b} Otherwise, ¢ is the same form as in Corollary 2.6 with z; being replaced
by 7.
Remark 2.8. Different from the previous models, we need to determine only
five unknowns in this case. Three smooth pasting conditions {C?-condition) at
z = zp and two value matching conditions {C'-condition) at z = 7} enable us
to calculate them numerically.

Remark 2.9. We have omitted the verification theorem of each model, since
this note is only focused on finding closed-form solution of the free boundary
value problem arising from each. We confirm that it is established by using the
arguments in [5], [9] and [11].

3. Numerical results

Figure 2 presents the ratio of the investor’s holdings of the illiquid asset on
the sell boundary (the solid line} and on buy boundary (the dotted line) to her
liguidated wealth as a function of the dividend yield in Model 1, for parameters
p+8=016,0=02, 2=01,v=2 =01, and 8 = a = 0.01. Since p+ ¢
is fixed, if there is no transaction costs, we think of the illiquid asset as a risky
asset having a constant expected rate of return g + 4 and no dividend. In this
case, the Merton line, the amount of investor’s optimal holdings of the illiquid
asset t0 her total wealth, does not change at all as § changes. However in the
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FIGURE 3. The ratio of the investor’s holdings of the illiquid
asset at the sell boundary (the solid line} and at buy boundary
(the dotted line) to her liguidated wealth as a function of the
dividend rate in Model 2, for parameters p+¢ = 0.16, 0 = 0.2,
p=01Lv=2r=01k=03and § =a =001
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FIGURE 4. The function ¢/(z) with no leverage constraint (the
solid line) and with leverage constraint 9 = 1 (the dotted line)
in Model 4, for parameters ¢ = 0.15, § = 001, o0 = 0.2,
A=01,p=0,v=2,7r=01¢e¢=1and § = a =001

Figure, the amounts of investor’s holdings of the illiquid asset to her liquidated
wealth on both the sell and buy boundaries increase as § increases. This means
that, as the dividend yield increases, the investor invests more in the illiquid
asset. Also, we can see that Figure 3 for Model 2 gives the result same as this.
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FI1GURE 5. The length of the interval [1/(27 +1 —«),1/(z1 +
1 — @)] as a function of # in Model 4, for parameters p =
0.15, 6 =0.01,0 =02, A=01,p=0,vy=2,r=01,e=1
and § = o = 0.01.

Figure 4 presents the function 2(z) with no portfolio constraint (the solid
line) and with constraint parameter 77 = 1 (the dotted line), in Model 4, for
parameters 4 = 0.15, § =0.01, 0 =02, A=0.1, p=0,v=2,r=01,¢e =1
and § = o = 0.01. We can immediately observe that the portfolio constraint
yields the reduction of the investor’s maximum expected utility.

Figure 5 presents the length of the interval [1/(zr + 1~ @),1/(21 + 1 — )]
corresponding to the NT region as a function of % in Model 4, for parameters
P =015 0=001,0=02A=01p=0~v=2r=01¢=1and
6 = a = 0.01. We observe that, if 7 < zj(i.e., 2y = zr) the length does not
change, but otherwise(i.e., 7} = z;) it decreases as 7 increases.
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