• Title/Summary/Keyword: porous Silicon

Search Result 342, Processing Time 0.026 seconds

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

Fast and Low Temperature Deposition of Polycrystalline Silicon Films by Hot Wire CVD (Hot Wire CVD를 이용한 다결정 Si 박막의 고속 저온 증착)

  • Lee, Jeong-Chul;Kang, Ki-Whan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1427-1429
    • /
    • 2001
  • Polycrystalline silicon(poly-Si) films are deposited on low temperature glass substrate by Hot-Wire CVD(HWCVD). The structural properties of the poly-Si films are strongly dependent on the wire temperature($T_w$). The films deposited at high $T_w$ of 2000$^{\circ}C$ have superior crystalline properties; average lateral grain sizes are larger than $1{\mu}m$ and there at·e no vertical grain boundaries. The surface of the high $T_w$ samples are naturally textured like pyramid shape. These large grain size and textured surface are believed to give high current density when applied to solar cells. However, the poly-si films are structurally porous and contains high defect density, by which high concentration of C and O resulted within the films by air-penetration after removed from chamber.

  • PDF

Growth of vertically aligned carbon nanotubes on silicon substrates by the thermal CVD (열화학기상증착법에 의해 실리콘 기판위에 수직방향으로 정렬된 탄소나노튜브의 성장)

  • 이철진;김대운;이태재;박정훈;손권희;류승철;최영철;박영수;최원석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.275-278
    • /
    • 1999
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD using $C_2$H$_2$gas. Since the discovery of carbon nanotubes, Synthesis of carbon nanotubes for mass production has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is of technological importance for applications to FED. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. Despite such breakthroughs in the growth, the growth mechanism of the alignment are still far from being clearly understood. Furthermore, FED has not been clearly demonstrated yet at a practical level. Here, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and then nanotubes are further grown by the cap growth mechanism.

  • PDF

Growth and Characterization of Polycrystalline Silicon Films by Hot-Wire Chemical Vapor Deposition (열선 CVD에 의해 증착된 다결정 실리콘 박막의 구조적 특성 분석)

  • Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Polycrystalline silicon(poly-Si) films are deposited on low temperature glass substrate by Hot-CVD(HWCVD). The structural properties of the poly-Si films are strongly dependent on the temperature$(T_w)$. The films deposited at high $T_w$ of $2000^{\circ}C$ have superior crystalline proper average lateral grain sizes are larger than $1{\mu}m$ and there are no vertical grain boundaries. The sur of the high $T_w$ samples are naturally textured like pyramid shape. These large grain size and text surface are believed to give high current density when applied to solar cells. However, the poly films are structurally porous and contains high defect density, by which high concentration of C and O resulted within the films by air-penetration after removed from chamber.

  • PDF

Diffusion of Si Vapor Infiltrating into Porous Graphite (다공성 흑연의 기공내부로 침투하는 Si 증발입자의 확산)

  • Park, Jang-Sick;Hwang, Jungtae
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.104-109
    • /
    • 2016
  • Graphite's thermal stability facilitates its widespread use as crucibles and molds in high temperatures processes. However, carbon atoms can be rather easily detached from pores and outer surfaces of the graphite due to the weak molecular force of the c axis of graphites. Detached carbon atoms are known to become a source of dust during fabrication processes, eventually lowering the effective yield of products. As an effort to reduce these problems of dust scattering, we have fabricated SiC composites by employing Si vapor infiltration method into the pores of graphites. In order to understand the diffusion process of the Si vapor infiltration, Si and C atomic percentages of fabricated SiC composites are carefully measured and the diffusion law is used to estimate the diffusion coefficient of Si vapor. A quadratic equation is obtained from the experimental results using the least square method. Diffusion coefficient of Si vapor is estimated using this quadratic equation. The result shows that the diffusion length obtained through the Si vapor infiltration method is about 10.7 times longer than that obtained using liquid Si and clearly demonstrates the usefulness of the present method.

Novel Method of Poly-silicon Crystallization using Ordered Porous Anodic Alumina (정렬된 다공질 산화알루미늄을 이용한 새로운 다결정 실리콘 결정화 방법)

  • Kim, Jong-Yeon;Kim, Mi-Jung;Kim, Byoung-Yong;Oh, Byeong-Yun;Han, Jin-Woo;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.396-396
    • /
    • 2007
  • Highly ordered pore structures as a template for formation of seeds have been prepared by the self-organization process of aluminum oxidation. The a-Si films were deposited on the anodic alumina films and crystallized by laser irradiation. It was found that un-melted part of fine poly-Si grain formed by explosive crystallization (EX) lead super lateral growth(SLG) and occluded with neighbor grains. The crystallized grains along the distribution of seeds were obtained. This results show a great potential for use in novel crystallization for decently uniform polycrystalline Si thin film transistors (poly-Si TFTs).

  • PDF

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon;Choi, Cheon-Kyu;Park, Min-Sik;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.159-166
    • /
    • 2022
  • The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Cage Link and the Effect of Cross-Link Breakdown (Cross-Link Breakdown 효과와 Cage Link)

  • Oh, Teresa;Kim, Kyung-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.517-520
    • /
    • 2004
  • Organosilicate films are promising porous low-dielectric materials, which can replace the silicon dioxide films. It was researched that organosilicate films have two different chemical shifts according to the increase of the flow rate ratio. There are the red shift due to the electron deficient substitution group, and the blue shift of the electron rich substitution group. Among these chemical shifts, the blue shift from $1000 cm^{-1}$ to $1250 cm^{-1}$ was related with the formation of pores. The methyl radicals of the electron-rich substitution group terminate easily the Si-O-Si cross-link, and the Si-O-C cage-link near $1057 cm^{-1}$ is originated from the cross-link breakdown due to much methyl radicals.

  • PDF