• 제목/요약/키워드: polypropylene fiber reinforced concrete

검색결과 146건 처리시간 0.02초

폴리프로필렌섬유보강 경량 폴리머 시멘트 콘크리트의 내동해성에 관한 연구 (A Study on the Resistance for Frost Damage of Polypropylene Fiber Reinforced Light Weight Polymer Cement Concrete)

  • 소형석;소승영;소양섭;박종호;탁재호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.89-92
    • /
    • 1995
  • For the development of lilght weight cement concrete with high durability, this study used perlite and paper sludge ash by the light weight material, and polypropylene fiber by the reinforcment, and poly-acrylic ester emulsion by the matrix improvement. According to the increasing mixture ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement concrete were showed high resistance for frost damage.

  • PDF

콘크리트의 휨성능 증진 및 균열제어에 대한 특수 가공된 셀룰로오스섬유의 효과 (Effects of Specialty Cellulose Fibers on Improvement of Flexural Performance and Control of Cracking of Concrete)

  • 원종필;박찬기
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.89-98
    • /
    • 2000
  • The mechanical properties of specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to drying shrinkage crack reduction potential of concrete and theirs evaluation are presented in this paper. The effects of differing fiber volume fraction(0.03%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Flexural performance(flexural strength and flexural toughness) test results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural performance of normal- and high- strength concrete(as compared to plain and polypropylene fiber reinforced concrete). Optimum specialty cellulose fiber reinforced concrete were obtianed using 0.08% fiber volume fraction. Drying shrinkage cracking test results confirmed specialty cellulose fibers are effective in reducing the drying shrinkage cracking of normal and high-strength concrete(as compared to popylene fiber reinforced concrete).

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권1호
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • 콘크리트학회논문집
    • /
    • 제15권1호
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.

폴리프로필렌 섬유보강 콘크리트의 강도 및 건조수축균열 제어특성 연구 (A Study on the Strength and Drying Shrinkage Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete)

  • 오병환;이명규;유성원;백상현
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.151-161
    • /
    • 1996
  • 토목 및 건축재료로써 폴리프로필렌 섬유보강 모르터 및 콘크리트의 사용은 미국, 영국 등지에서 개발되기 시작하여 많은 연구가 진행되어 왔는데, 경제적 이점, 화학적인 안정성과 우수한 내구성으로 인해 국내에서도 그 사용이 점차 증대되고 있는 실정이다. 이러한 폴리프로필렌 섬유의 사용은 모르터 및 콘크리트가 건조나 온도에 의해 수축될 때 , 구속에 의해 발행하는 인장응력 및 균열을 제어하고, 인성의 증가와 충격, 마모, 피로에 대한 저항성을 증대시키며, 콘크리트의 내구성을 증대시키는 등의 장점을 가지는 것으로 보고되고 있다. 본 연구에서는 이러한 폴리프로필렌 섬유보강 모르터 및 콘크리트의 재료적 특성인 유동성, 압축강도, 인장강도, 휨인성뿐만 아니라 균열제어특성, 건조수측특성을 실험을 통하여 규명하고자 하였다. 본 연구 결과. 폴리프로필렌섬유의 혼입으로 인성이 증가되고 건조수축균열 및 건조수축량이 제어되고 있는 것으로 나타났다. 본 연구는 앞으로 건조수축균열제어와 인성증가를 위한 폴리프로필렌 섬유보강 콘크리트의 활용 및 설계에 기초자료를 제시할 수 있을 것으로 사료된다.

폴리프로필렌 섬유보강콘크리트의 섬유형태에 따른 역학적 특성에 관한 연구 (A Study on the Mechanical Properties of Polypropylene Fiber Reinforced Concrete According to the Fiber Types)

  • 박승범;오광진;박병철;장석호;이봉춘
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.321-327
    • /
    • 1996
  • The result of an experimental study on the mechanical properties of different types of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as slump, Vee-Bee time, compressive strength, tensile strength, flexural strength, toughness and resistance to impact. The test variables are fiber content, fiber types, fiber length and W/C ratio. Polypropylene fibers were effective in reinforcing the matrix. A remarkable increase in toughness was observed by the addition of polypropylene fibers.

  • PDF

폴리프로필렌 섬유보강 고유동 콘크리트의 역학적 및 건조수축 특성 (Mechanial and Drying Shrinkage Properties of Polypropylene Fiber Reinforced High Flow Concrete)

  • 노경희;성찬용
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.79-85
    • /
    • 2004
  • This study was performed to evalute mechanical and drying shrinkage properties of polypropylene fiber reinforced high flow concrete. The compressive strength and drying shrinkage ratio were increased with increasing the binder volume ratio and decreased with increasing the content of polypropylene fiber. The splitting tensile strength was increased with increasing the binder volume ratio and the content of polypropylene fiber. The flexural strength was increased with increasing the binder volume ratio and increased by the polypropylene fiber content 0.4%, but above the polypropylene fiber content 0.6% was decreased. This concrete can be used for high flow concrete.

합성섬유를 혼입한 콘크리트의 강도 및 내구특성 (A Study on the Durability and Strength Properties of Incorporating Polypropylene Fiber)

  • 정영화;이주형;홍창우;이정호
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.371-378
    • /
    • 1998
  • Concrete structures has been deteriorated by poor environment. This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Therefore, the research of durability must be executed for application of Polypropylene fiber reinforced concrete real structures. Concrete durability properties incorporating Polypropylene fiber was performed with the variable of Fiber contents, Fiber type and Target strength, specimens were made and subjected to durability and strength tests. The results show that strength of concrete is increased the Fiber content increase, Mono-Filament fiber and Polypropylene fiber reinforced concrete makes improved durability properties.

  • PDF

폴리프로필렌 섬유보강 콘크리트(PFRC)의 역학적 특성 및 내구성에 관한 실험적 연구 (An Experimental Study on the Mechanical Study and Durability of PFRC(Polypropylene Fiber Reinforced Concrete))

  • 박승범;이봉춘;권혁준;윤준석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.293-298
    • /
    • 1998
  • The result of an experimental study on the mechanical properties and durability of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as strength, toughness and durability. The test variables are fiber content, fiber types, W/C ratio. PFRC shows the highest strength when the polypropylene fiber contents were increased to 2.0 vol.%. Also, freeze-thaw resistance and carbonation were somewhat more improved than plain concrete.

  • PDF