• Title/Summary/Keyword: polynomial root

Search Result 125, Processing Time 0.023 seconds

Square and Cube Root Algorithms in Finite Field and Their Applications (유한체상의 제곱근과 세제곱근을 찾는 알고리즘과 그 응용)

  • Cho, Gook Hwa;Ha, Eunhye;Koo, Namhun;Kwon, Soonhak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1031-1037
    • /
    • 2012
  • We study an algorithm that can efficiently find square roots and cube roots by modifying Tonelli-Shanks algorithm, which has an application in Number Field Sieve (NFS). The Number Field Sieve, the fastest known factoring algorithm, is a powerful tool for factoring very large integer. NFS first chooses two polynomials having common root modulo N, and it consists of the following four major steps; 1. Polynomial Selection 2. Sieving 3. Matrix 4. Square Root. The last step of NFS needs the process of square root computation in Number Field, which can be computed via square root algorithm over finite field.

3X Serial GF($2^m$) Multiplier Architecture on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • Moon, Sang-Ook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.328-332
    • /
    • 2006
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only partial-sum block in the hardware. So far, there have been grossly 3 types of studies on GF($2^m$) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software.

Efficient Formulas for Cube roots in $F_{3^m}$ for Pairing Cryptography (페어링 암호 연산을 위한 $F_{3^m}$에서의 효율적인 세제곱근 연산 방법)

  • Cho, Young-In;Chang, Nam-Su;Kim, Chang-Han;Park, Young-Ho;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.3-11
    • /
    • 2011
  • Evaluation of cube roots in characteristic three finite fields is required for Tate (or modified Tate) pairing computation. The Hamming weights (the number of nonzero coefficients) in the polynomial representations of $x^{1/3}$ and $x^{2/3}$ determine the efficiency of cube roots computation, where $F_{3^m}$is represented as $F_3[x]/(f)$ and $f(x)=x^m+ax^k+b{\in}F_3[x]$ (a, $b{\in}F_3$) is an irreducible trinomial. O. Ahmadi et al. determined the Hamming weights of $x^{1/3}$ and $x^{2/3}$ for all irreducible trinomials. In this paper, we present formulas for cube roots in $F_{3^m}$ using the shifted polynomial basis(SPB). Moreover, we provide the suitable shifted polynomial basis bring no further modular reduction process.

A comparative study of three collocation point methods for odd order stochastic response surface method

  • Li, Dian-Qing;Jiang, Shui-Hua;Cheng, Yong-Gang;Zhou, Chuang-Bing
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.595-611
    • /
    • 2013
  • This paper aims to compare three collocation point methods associated with the odd order stochastic response surface method (SRSM) in a systematical and quantitative way. The SRSM with the Hermite polynomial chaos is briefly introduced first. Then, three collocation point methods, namely the point method, the root method and the without origin method underlying the odd order SRSMs are highlighted. Three examples are presented to demonstrate the accuracy and efficiency of the three methods. The results indicate that the condition that the Hermite polynomial information matrix evaluated at the collocation points has a full rank should be satisfied to yield reliability results with a sufficient accuracy. The point method and the without origin method are much more efficient than the root method, especially for the reliability problems involving a large number of random variables or requiring complex finite element analysis. The without origin method can also produce sufficiently accurate reliability results in comparison with the point and root methods. Therefore, the origin often used as a collocation point is not absolutely necessary. The odd order SRSMs with the point method and the without origin method are recommended for the reliability analysis due to their computational accuracy and efficiency. The order of SRSM has a significant influence on the results associated with the three collocation point methods. For normal random variables, the SRSM with an order equaling or exceeding the order of a performance function can produce reliability results with a sufficient accuracy. The order of SRSM should significantly exceed the order of the performance function involving strongly non-normal random variables.

Comparison and Evaluation of Root Mean Square for Parameter Settings of Spatial Interpolation Method (공간보간법의 매개변수 설정에 따른 평균제곱근 비교 및 평가)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.29-41
    • /
    • 2010
  • In this study, the prediction errors of various spatial interpolation methods used to model values at unmeasured locations was compared and the accuracy of these predictions was evaluated. The root mean square (RMS) was calculated by processing different parameters associated with spatial interpolation by using techniques such as inverse distance weighting, kriging, local polynomial interpolation and radial basis function to known elevation data of the east coastal area under the same condition. As a result, a circular model of simple kriging reached the smallest RMS value. Prediction map using the multiquadric method of a radial basis function was coincident with the spatial distribution obtained by constructing a triangulated irregular network of the study area through the raster mathematics. In addition, better interpolation results can be obtained by setting the optimal power value provided under the selected condition.

MODIFIED CYCLOTOMIC POLYNOMIALS

  • Ae-Kyoung, Cha;Miyeon, Kwon;Ki-Suk, Lee;Seong-Mo, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1511-1522
    • /
    • 2022
  • Let H be a subgroup of $\mathbb{Z}^*_n$ (the multiplicative group of integers modulo n) and h1, h2, …, hl distinct representatives of the cosets of H in $\mathbb{Z}^*_n$. We now define a polynomial Jn,H(x) to be $$J_{n,H}(x)=\prod^l_{j=1} \left( x-\sum_{h{\in}H} {\zeta}^{h_jh}_n\right)$$, where ${\zeta}_n=e^{\frac{2{\pi}i}{n}}$ is the nth primitive root of unity. Polynomials of such form generalize the nth cyclotomic polynomial $\Phi_n(x)={\prod}_{k{\in}\mathbb{Z}^*_n}(x-{\zeta}^k_n)$ as Jn,{1}(x) = Φn(x). While the nth cyclotomic polynomial Φn(x) is irreducible over ℚ, Jn,H(x) is not necessarily irreducible. In this paper, we determine the subgroups H for which Jn,H(x) is irreducible over ℚ.

A New Method of Finding Real Roots of Nonlinear System Using Extended Fixed Point Iterations (확장된 고정점이론을 이용한 비선형시스템의 근을 구하는 방법)

  • Kim, Sung-Soo;Kim, Ji-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.277-284
    • /
    • 2018
  • In this paper, a new numerical method of finding the roots of a nonlinear system is proposed, which extends the conventional fixed point iterative method by relaxing the constraints on it. The proposed method determines the real valued roots and expands the convergence region by relaxing the constraints on the conventional fixed point iterative method, which transforms the diverging root searching iterations into the converging iterations by employing the metric induced by the geometrical characteristics of a polynomial. A metric is set to measure the distance between a point of a real-valued function and its corresponding image point of its inverse function. The proposed scheme provides the convenience in finding not only the real roots of polynomials but also the roots of the nonlinear systems in the various application areas of science and engineering.

ON FUNCTIONAL EQUATIONS OF THE FERMAT-WARING TYPE FOR NON-ARCHIMEDEAN VECTORIAL ENTIRE FUNCTIONS

  • An, Vu Hoai;Ninh, Le Quang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1185-1196
    • /
    • 2016
  • We show a class of homogeneous polynomials of Fermat-Waring type such that for a polynomial P of this class, if $P(f_1,{\ldots},f_{N+1})=P(g_1,{\ldots},g_{N+1})$, where $f_1,{\ldots},f_{N+1}$; $g_1,{\ldots},g_{N+1}$ are two families of linearly independent entire functions, then $f_i=cg_i$, $i=1,2,{\ldots},N+1$, where c is a root of unity. As a consequence, we prove that if X is a hypersurface defined by a homogeneous polynomial in this class, then X is a unique range set for linearly non-degenerate non-Archimedean holomorphic curves.

A Comparative Study on the Prediction of KOSPI 200 Using Intelligent Approaches

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.

The Application of RFM for Geometric Correction of High-Resolution Satellite Image Data (고해상도 인공위성 영상데이터의 기하보정을 위한 RFM의 적용)

  • 안기원;임환철;서두천
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • In this study, in order to discuss the geometric correction methods of high-resolution IKONOS satellite image, the existing polynomial model and RFM which is able to rectify satellite image without auxiliary data are applied to IKONOS satellite image data. Then the accuracy of ground point versus number of GCPs and each order of RFM are assessed. A numerical instability is removed by application of Tikhonov regularization method. As the results of this study, the root mean square errors of RFM is decreased more than 2 pixels in comparison with the two dimensional polynomial model.