DOI QR코드

DOI QR Code

MODIFIED CYCLOTOMIC POLYNOMIALS

  • Ae-Kyoung, Cha (Department of Mathematics Education Korea National University of Education) ;
  • Miyeon, Kwon (Department of Mathematics University of Wisconsin-Platteville) ;
  • Ki-Suk, Lee (Department of Mathematics Education Korea National University of Education) ;
  • Seong-Mo, Yang (Department of Mathematics Education Korea National University of Education)
  • Received : 2021.12.01
  • Accepted : 2022.05.02
  • Published : 2022.11.30

Abstract

Let H be a subgroup of $\mathbb{Z}^*_n$ (the multiplicative group of integers modulo n) and h1, h2, …, hl distinct representatives of the cosets of H in $\mathbb{Z}^*_n$. We now define a polynomial Jn,H(x) to be $$J_{n,H}(x)=\prod^l_{j=1} \left( x-\sum_{h{\in}H} {\zeta}^{h_jh}_n\right)$$, where ${\zeta}_n=e^{\frac{2{\pi}i}{n}}$ is the nth primitive root of unity. Polynomials of such form generalize the nth cyclotomic polynomial $\Phi_n(x)={\prod}_{k{\in}\mathbb{Z}^*_n}(x-{\zeta}^k_n)$ as Jn,{1}(x) = Φn(x). While the nth cyclotomic polynomial Φn(x) is irreducible over ℚ, Jn,H(x) is not necessarily irreducible. In this paper, we determine the subgroups H for which Jn,H(x) is irreducible over ℚ.

Keywords

Acknowledgement

This work was financially supported by the 2021 Sabbatical Leave Research Grant funded by Korea National University of Education.

References

  1. J. R. Bastida, Field extensions and Galois theory, Encyclopedia of Mathematics and its Applications, 22, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. https://doi.org/10.1017/CBO9781107340749
  2. H. G. Diamond, F. Gerth, III, and J. D. Vaaler, Gauss sums and Fourier analysis on multiplicative subgroups of Zq, Trans. Amer. Math. Soc. 277 (1983), no. 2, 711-726. https://doi.org/10.2307/1999232
  3. R. J. Evans, Generalized cyclotomic periods, Proc. Amer. Math. Soc. 81 (1981), no. 2, 207-212. https://doi.org/10.2307/204419
  4. J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley Publishing Co., Reading, MA, 1967.
  5. H. Hasse, Number Theory, Springer-Verlag, Berlin, 1980.
  6. I. M. Isaacs, Algebra, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.
  7. M. Kwon, J.-E. Lee, and K.-S. Lee, Galois irreducible polynomials, Commun. Korean Math. Soc. 32 (2017), no. 1, 1-6. https://doi.org/10.4134/CKMS.c160003
  8. T. Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York, 1951.
  9. G. Shin, J. Y. Bae, and K.-S. Lee, Irreducibility of Galois polynomials, Honam Math. J. 40 (2018), no. 2, 281-291. https://doi.org/10.5831/HMJ.2018.40.2.281