• Title/Summary/Keyword: polycrystalline silicon thin-film transistor

Search Result 65, Processing Time 0.027 seconds

Trend of Crystallization Technology and Large Scale Research for Fabricating Thin Film Transistors of AMOLED Displays (AMOLED 디스플레이의 박막트랜지스터 제작을 위한 결정화 기술 동향 및 대형화 연구)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin;Min, Youngsil
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • This paper discusses recent trends in the fabrication of semiconducting materials among the components of thin film transistors used in AMOLED display. In order to obtain a good semiconductor film, it is necessary to change the amorphous silicon into polycrystalline silicon. There are two ways to use laser and heat. Laser-based methods include sequential lateral solidification (SLS), excimer laser annealing (ELA), and thin-beam directional crystallization (TDX). Solid phase crystallization (SPC), super grain silicon (SGS), metal induced crystallization (MIC) and field aided lateral crystallization (FALC) were crystallized using heat. We will also study research for manufacturing large AMOLED displays.

Degradation of Polycrystalline Silicon Thin Film Transistor by Inducing Stress (스트레스 인가에 의한 다결정 실리콘 박막 트랜지스터의 열화 특성)

  • 백도현;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.322-325
    • /
    • 2000
  • N-channel poly-Si TFT, Processed by Solid Phase Crystalline(SPC) on a glass substrate, has been investigated by measuring its electrical properties before and after electrical stressing. It is observed that the threshold voltage shift due to electrical stress varies with various stress conditions. Threshold voltages measured in 1.5$\mu\textrm{m}$ and 3$\mu\textrm{m}$ poly-Si TFTs are 3.3V, 3.V respectively. With the threshold voltage shia the degradation of transconductance(G$\_$m/) and subthreshold swing(S) is also observed.

  • PDF

A Study on the Formation of Polycrystalline Silicon Film by Lamp-Scanning Annealing and Fabrication of Thin Film Transistors (램프 스캐닝 열처리에 의한 다결정 실리콘 박막의 형성 및 TFT 제작에 관한 연구)

  • Kim, Tae-Kyung;Kim, Gi-Bum;Lee, Byung-Il;Joo, Seung-Ki
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.57-62
    • /
    • 1999
  • Polycrystaline thin film transistors are fabricated on the transparent glass substrate by a lamp-scan annealing. The line-shaped lamp scanning method, which is profitable for large area process, effectively radiated silicon film on glass substrate. Amorphous silion film absorbs the light which is emitted from halogen-lamp and it transformed into crystalline silicon by metal-induced lateral crystallization. In order to enhance the annealing effect, capping layer was deposited on the whole substrate. When the scan speed was 1-2mm/sec, lateral crystallization of amorphous silicon under capping layer was 18~27${\mu}m/scan$. The thin film transistor fabricated by this method shows high electron mobility over 130$cm^2/V{\cdot}sec$

  • PDF

Silicon Oxidation in Inductively-Coupled N2O Plasma and its Effect on Polycrystalline-Silicon Thin Film Transistors (유도결합 N2O 플라즈마를 이용한 실리콘 산화막의 저온성장과 다결정 실리콘 박막 트랜지스터에의 영향)

  • Won, Man-Ho;Kim, Sung-Chul;Ahn, Jin-Hyung;Kim, Bo-Hyun;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.724-728
    • /
    • 2002
  • Inductively-coupled $N_2$O plasma was utilized to grow silicon dioxide at low temperature and applied to fabricate polycrystalline-silicon thin film transistors. At $400^{\circ}C$, the thickness of oxide was limited to 5nm and the oxide contained Si≡N and ≡Si-N-Si≡ bonds. The nitrogen incorporation improved breakdown field to 10MV/cm and reduced the interface charge density to $1.52$\times$10^{11}$ $cm^2$ with negative charge. The $N_2$O plasma gate oxide enhanced the field effect mobility of polycrystalline thin film transistor, compared to $O_2$ plasma gate oxide, due to the reduced interface charge at the $Si/SiO_2$ interface and also due to the reduced trap density at Si grain boundaries by nitrogen passivation.

Schottky barrier polycrystalline silicon thin film transistor by using platinum-silicided source and drain (플레티늄-실리사이드를 이용한 쇼트키 장벽 다결정 박막 트랜지스터트랜지스터)

  • Shin, Jin-Wook;Choi, Chel-Jong;Chung, Hong-Bay;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.80-81
    • /
    • 2008
  • Schottky barrier thin film transistors (SB-TFT) on polycrystalline silicon(poly-Si) are fabricated by platinum silicided source/drain for p-type SB-TFT. High quality poly-Si film were obtained by crystallizing the amorphous Si film with excimer laser annealing (ELA) or solid phase crystallization (SPC) method. The fabricated poly-Si SB-TFTs showed low leakage current level and a large on/off current ratio larger than $10^5$. Significant improvement of electrical characteristics were obtained by the additional forming gas annealing in 2% $H_2/N_2$ ambient, which is attributed to the termination of dangling bond at the poly-Si grain boundaries as well as the reduction of interface trap states at gate oxide/poly-Si channel.

  • PDF

Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers (폴리머 위에 엑시머 레이저 방법으로 결정화된 다결정 실리콘의 특성)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin;Min, Youngsil
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.75-81
    • /
    • 2019
  • In this work, we investigated a low temperature polycrystalline silicon (LTPS) thin film transistors fabrication process on polymer layers. Dehydrogenation and activation processes were performed by a furnace annealing at a temperature of $430^{\circ}C$ for 2 hr. The crystallization of amorphous silicon films was formed by excimer laser annealing (ELA) method. The p-type device performance, fabricated by polycrystalline silicon (poly-Si) films, shows a very good performance with field effect mobility of $77cm^2/V{\cdot}s$ and on/off ratio current ratio > $10^7$. We believe that the poly-Si formed by a LTPS process may be well suited for fabrication of poly-Si TFTs for bendable panel displays such as AMOLED that require circuit integration.

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF

Edge Cut Process for Reducing Ni Content at Channel Edge Region in Metal Induced Lateral Crystallization Poly-Si TFTs

  • SEOK, Ki Hwan;Kim, Hyung Yoon;Park, Jae Hyo;Lee, Sol Kyu;Lee, Yong Hee;Joo, Seung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Nickel silicide is main issue in Polycrystalline silicon Thin Film Transistor (TFT) which is made by Metal Induced Lateral Crystallization (MILC) method. This Nickel silicide acts as a defect center, and this defect is one of the biggest reason of the high leakage current. In this research, we fabricated polycrystalline TFTs with novel method called Edge Cut (EC). With this new fabrication method, we assumed that nickel silicide at the edge of the channel region is reduced. Electrical properties are measured and trap state density also calculated using Levinson & Proano method.

Characteristics of low temperature poly-Si thin film transistor using excimer laser annealing (엑시머 레이저를 이용한 저온 다결정 실리콘 박막 트랜지스터의 특성)

  • Kang, Soo-Hee;Kim, Yong-Hoon;Han, Jin-Woo;Seo, Dae-Shik;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.430-431
    • /
    • 2006
  • This letter reports the fabrication of polycrystalline silicon thin-film transistors (poly-Si TFT) on flexible plastic substrates using amorphous silicon (a-Si) precursor films by sputter deposition. The a-Si films were deposited with mixture gas of argon and helium to minimize the argon incorporation into the film. The precursor films were then laser crystallized using XeCl excimer laser irradiation and a four-mask-processed poly-Si TFTs were fabricated with fully self-aligned top gate structure.

  • PDF

The Characteristics of High Temperature Crystallized Poly-Si for Thin Film Transistor Application (박막트랜지스터 응용을 위한 고온 결정화된 다결정실리콘의 특성평가)

  • 김도영;심명석;서창기;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.237-241
    • /
    • 2004
  • Amorphous silicon (a-Si) films are used in a broad range of solar cell, flat panel display, and sensor. Because of the greater ease of deposition and lower processing temperature, thin films are widely used for thin film transistors (TFTs). However, they have lower stability under the exposure of visible light and because of their low field effect mobility ($\mu$$_{FE}$ ) , less than 1 c $m^2$/Vs, they require a driving IC in the external circuits. On the other hand, polycrystalline silicon (poly-Si) thin films have superiority in $\mu$$_{FE}$ and optical stability in comparison to a-Si film. Many researches have been done to obtain high performance poly-Si because conventional methods such as excimer laser annealing, solid phase crystallization and metal induced crystallization have several difficulties to crystallize. In this paper, a new crystallization process using a molybdenum substrate has been proposed. As we use a flexible substrate, high temperature treatment and roll-to-roll process are possible. We have used a high temperature process above 75$0^{\circ}C$ to obtain poly-Si films on molybdenum substrates by a rapid thermal annealing (RTA) of the amorphous silicon (a-Si) layers. The properties of high temperature crystallized poly-Si studied, and poly-Si has been used for the fabrication of TFT. By this method, we are able to achieve high crystal volume fraction as well as high field effect mobility.