• Title/Summary/Keyword: polycrystalline Si

Search Result 462, Processing Time 0.024 seconds

The Effects of Si Content on the Cutting Characteristics in the Turing Process of A1-Si Alloy, Using a Polycrystalline Diamond Tool (다결정 다이아몬드공구를 사용한 Al-Si합금의 선삭과정에서 절삭특성에 미치는 Si함량의 영향)

  • Lee, Kyung-Ho;Yun, Young-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.20-26
    • /
    • 1995
  • With the recent development of light and high efficient automobiles and aircraft, demand of the A1-Si alloy is rapidly increasing. However, there is an inclination that as the content of silicon increases it becomes more difficult to machine. Accordingly, the present study intends to analyse and study the cutting resistance and surface roughness of A1-Si alloy with Si contents of 8%, 12%, 17%, and 20%. The A1-Si alloy specimens were turned by a poly- crystalline diamond tool under selected cutting conditions, and results are here described and discussed.

  • PDF

Design and Fabrication of microheaters based oil polycrystalline 3C-SiC with large uniform-temperature area for high temperature (다결정 3C-SiC 기반으로 한 넓은 범위에서 균일한 온도 분포를 갖는 초고온용 마이크로 히터 설계 및 제작)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.214-215
    • /
    • 2009
  • This paper presents the fabrication and characteristics of microheaters, built on AlN(0.1 um)/3C-SiC(1 um) suspended membranes. Pt was used as microheater and temperature sensor materials. The results of simulated are shown that AlN/3C-SiC membrane has more large uniform-temperature area than $SiO_2$/3C-SiC membrane. Resistance of temperature sensor and power consumption of microheater were measured and calculated. Pt microheater generates the heat of about $550^{\circ}C$ at 340 mW and TCR of Pt temperature sensor is about 3188 ppm/$^{\circ}C$.

  • PDF

Formation of ZnO ZnO thin films 3C-SiC buffer layer (3C-SiC 버퍼층위에 ZnO 박막 형성)

  • Lee, Yun-Myung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.237-237
    • /
    • 2009
  • Zinc oxide (ZnO) thin film was deposited on Si substrates using polycrystalline (poly) 3C-SiC buffer layer, in which the ZnO film was grown by sol-gel method. Physical characteristics of the grown ZnO film was investigated experimentally by means of SEM, XRD, FT-IR (Furier Transform-Infrared spectrum), and AFM. XRD pattern was proved that the grown ZnO film on 3C-SiC layers had highly (002) orientation with low FWHM (Full width of half maxium). These results showed that ZnO thin film grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

  • PDF

Electrical and optical characteristics of porous 3C-SiC thin films with dopants (도핑량에 따른 다공성 3C-SiC 박막의 전기 및 광학적 특성)

  • Kim, Kan-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.27-27
    • /
    • 2010
  • This paper describes the electrical and optical characteristics of $N_2$ doped porous 3C-SiC films. Average pore diameter is about 30 nm and etched area was increased with $N_2$ doping rate. The mobility was dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC were 2.5 eV and 2.7 eV, respectively.

  • PDF

A Study on the characteristics of polycrystalline silicon thin films prepared by solid phase cyrstallization (고상 결정화에 의해 제작된 다결정 실리콘 박막의 특성 연구)

  • 김용상
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.794-799
    • /
    • 1997
  • Poly-Si films have been prepared by solid phase crystallization of LPCVD(low-pressure CVD) amorphous silicon. The crystallinity of poly-Si films has been derived from UV reflectance spectrum and lies in the range between 70% and 80% . From XRD measurement the peak at 28.2$^{\circ}$from (111) plane is dominantly detected in the SPC poly-Si films, The average grain size of poly-Si film is determined by the image of SEM and varies from 4000 $\AA$ to 8000$\AA$. The electrical conductivity of as-deposited amorphous silicon film is about 2.5$\times$10$^{-7}$ ($\Omega$.cm)$^{-1}$ , and 3~4$\times$10$^{-6}$ ($\Omega$.cm)$^{-1}$ of room temperature conductivity is the SPC poly-Si films. The conductivity activation energies are 0.5~0.6 eV or the 500$\AA$-thick poly-Si films.

  • PDF

Schottky Barrier Thin Film Transistor by using Platinum-silicided Source and Drain (플레티늄-실리사이드를 이용한 쇼트키 장벽 다결정 박막 트랜지스터)

  • Shin, Jin-Wook;Chung, Hong-Bay;Lee, Young-Hie;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.462-465
    • /
    • 2009
  • Schottky barrier thin film transistors (SB-TFT) on polycrystalline silicon(poly-Si) are fabricated by platinum silicided source/drain for p-type SB-TFT. High quality poly-Si film were obtained by crystallizing the amorphous Si film with excimer laser annealing (ELA) or solid phase crystallization (SPC) method, The fabricated poly-Si SB-TFTs showed low leakage current level and a large on/off current ratio larger than 10), Significant improvement of electrical characteristics were obtained by the additional forming gas annealing in 2% $H_2/N_2$ ambient, which is attributed to the termination of dangling bond at the poly-Si grain boundaries as well as the reduction of interface trap states at gate oxide/poly-Si channel.

Mechanical Propertis and Contact Damage Behavior of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 기계적 성질 및 접촉 손상 거동)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.333-338
    • /
    • 1998
  • Mechanical properties of polycrystalline{{{{ {Ti }_{3 }{SiC}_{2 } }} were investigated. Hertzian indentation test using a spher-ical indenter was used to study elastic and plastic behavior in{{{{ {Ti }_{3 }{SiC}_{2 } }} A high ratio of hardness to elastic mo-dulus indicated that mechanical properties of{{{{ {Ti }_{3 }{SiC}_{2 } }} are somehow similar to those of metals. Indentation stress-strain curve deviated from an ideal elastic limit indicating exceptional plasticity in this material. De-formation zones were formed below the contact as well as around the contact area. Intragrain slip would ac-count for high plasticity.

  • PDF

A Study of High-efficiency me-silicon solar cells for SiNx passivation (SiNx passivation에 따른 Solar Cell의 효율향상에 관한 연구)

  • Ko, Jae-Kyung;Lim, Dong-Gun;Kim, Do-Young;Park, Sung-Hyun;Park, Joong-Hyun;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.964-967
    • /
    • 2002
  • The effectiveness of silicon nitride SiNx surface passivation is investigated and quantified. This study adopted single-layer antireflection (SLAR) coating of SiNx for efficiency improvement of solar cell. The silicon nitride films were deposited by means of plasma enhanced chemical vapor deposition (PECVD) in planar coil reactor. The process gases used were pure ammonia and a mixture of silane and helium. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment. This films obtained were analyzed in term of hydrogen content, refractive index for gas flow ratio $(NH_3/SiH_4)$, and efficiency of solar cell. The polycrystalline silicon solar cells passivated by silicon nitride shows efficiency above 12.8%.

  • PDF

The study of crystallization to Si films deposited using a sputtering method on a Mo substrate (Mo기판 위에 sputtering 법으로 성장된 Si 박막의 결정화 연구)

  • 김도영;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.36-39
    • /
    • 2002
  • Polycrystalline silicon (poly-Si) thin film transistor (TFT) technology is emerging as a key technology for active matrix liquid crystal displays (AMLCD), allowing the integration of both active matrix and driving circuit on the same substrate (normally glass). As high temperature process is not used for glass substrate because of the low softening points below 450$^{\circ}C$. However, high temperature process is required for getting high crystallization volume fraction (i.e. crystallinity). A poly-Si thin film transistor has been fabricated to investigate the effect of high temperature process on the molybdenum (Mo) substrate. Improve of the crystallinity over 75% has been noticed. The properties of structural and electrical at high temperature poly-Si thin film transistor on Mo substrate have been also analyzed using a sputtering method

  • PDF

A study of electrical stress on short channel poly-Si thin film transistors (짧은 채널 길이의 다결정 실리콘 박막 트랜지스터의 전기적 스트레스에 대한 연구)

  • 최권영;김용상;한민구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.126-132
    • /
    • 1995
  • The electrical stress of short channel polycrystalline silicon (poly-Si) thin film transistor (TFT) has been investigated. The device characteristics of short channel poly-Si TFT with 5$\mu$m channel length has been observed to be significantly degraded such as a large shift in threshold voltage and asymmetric phenomena after the electrical stress. The dominant degradation mechanism in long channel poly-Si TFT's with 10$\mu$m and 20$\mu$m channel length respectively is charage trappling in gate oxide while that in short channel device with 5.mu.m channel length is defect creation in active poly-Si layer. We propose that the increased defect density within depletion region near drain junction due to high electric field which could be evidenced by kink effect, constitutes the important reason for this significant degradation in short channel poly-Si TFT. The proposed model is verified by comparing the amounts of the defect creation and the charge trapping from the strechout voltage.

  • PDF