• 제목/요약/키워드: poly-${\gamma}$-glutamate

검색결과 46건 처리시간 0.03초

Comparison of the Stability of Poly-γ-Glutamate Hydrogels Prepared by UV and γ-Ray Irradiation

  • Park, Sang-Joon;Uyama, Hiroshi;Kwak, Mi-Sun;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1078-1082
    • /
    • 2019
  • Poly-${\gamma}$-glutamate (${\gamma}$-PGA) has various applications due to its desirable characteristics in terms of safety and biodegradability. Previous studies have been conducted on ${\gamma}$-PGA hydrogels produced by ${\gamma}$-ray irradiation, but these hydrogels have proved unstable in solutions. This study was conducted to enable the ${\gamma}$-PGA hydrogel to maintain a stable form in solutions. The ${\gamma}$-PGA mixture for UV-irradiation was prepared with a cross-linker (N,N,N-trimethyl-3-[(2-methylacryloyl)amino]propan-1-aminium). Both ${\gamma}$-PGA hydrogels' characteristics, including stability in solutions, were examined. The UV-irradiated ${\gamma}$-PGA hydrogel maintained a stable form during the nine weeks of the study, but the ${\gamma}$-ray irradiated hydrogel dissolved after one week.

Amino-carbonyl 반응에 의한 glucose-poly-${\gamma}$-glutamate (Glu-PGA) 갈변 반응물질의 항산화적 특성 연구 (Antioxidative Characteristics of Browning Reaction Products of Glucose-Poly-${\gamma}$-Glutamate (GIu-PGA) obtained from Amino-carbonyl Reaction)

  • 이남근;함영태
    • 한국식품과학회지
    • /
    • 제37권5호
    • /
    • pp.812-815
    • /
    • 2005
  • 청국장 점질물인 PGA의 갈변 및 갈변 반응물질의 분획에 따른 갈변도와 전자 공여능에 따른 항산화력을 알아보았다. PGA의 갈변은 자체적으로는 갈변이 잘 일어나지 않고, 염기적 조건 하에서 glucose을 첨가하고 가열하면 갈변이 급격하게 일어나며 전자 공여능 또한 높게 나타났다. 염기적 조건 하에서 얻은 PGA 갈변 반응 물질(Glu-PGA, pH 8.2)을 Sephadex G-50을 이용하여 분획하고, 분획에 따른 갈변도 및 DPPH를 이용한 전자 공여능을 측정하였다. 분획된 갈변 반응 물질들은 비교적 광범위한 갈변도 및 전자 공여능을 보여 주었다. 이들 중 갈변도 및 전자 공여능이 상대적으로 높은 F-7과 F-20의 UV-VIS 흡수대에 있어서는 F-20은 멜라노이딘의 흡수대인 260-320nm에 걸쳐 완만한 흡수곡선을 나타내었고, F-7은 270nm 부근에서 특징적인 최대 흡수대를 나타내었다. 두 분획 물질의 분자량은 SDS-PAGE로 분석한 결과 F-7은 대략 35kDa 이상으로 나타났고, F-20은 SDS-PAGE상에서 뚜렷한 크기는 알 수 없었으나, F-7 보다는 비교적 저분자량을 갖는 물질이라는 것을 알 수 있었다.

SYNTHESIS OF BLOCK COPOLYMERS CONTAINING POLYPEPTIDE AND ITS BIOMEDICAL APPLICATION

  • Cho, Chong-Su
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 1997년도 Progress and Future Development of Sericultural Science and Technology 40th Anniversary Commemoration Symposium
    • /
    • pp.159-169
    • /
    • 1997
  • ABA-type(or AB) block copolymers composed of poly(${\gamma}$-alkyl L-glutamate) (PALG)[or poly(L-leucine)] as the A component and polyether[or poly (N-isopropy1 acrylamide) as the B component were synthesized by polymerization of (${\gamma}$-alkyl L-glutamate N-carboxyanhydride initiated by primary amined located at both(or one) ends of the polymer chains. Structural studies of the block copolymers were performed in the solution and solid state. Also, artificial skin, drug delivery system of the block copolymers and cell attachment onto the copolymer were carried out for biomedical applications.

Physicochemical Properties of Poly-γ-glutamic Acid Produced by a Novel Bacillus subtilis HA Isolated from Cheonggukjang

  • Seo, Ji-Hyun;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.354-361
    • /
    • 2008
  • A novel bacterium isolated from Cheonggukjang was identified as a glutamate-dependent Bacillus subtilis HA with 98.3% similarity to Bacillus subtilis Z99104. Optimization of poly-$\gamma$-glutamic acid ($\gamma$-PGA) production by modulating fermentation factors including carbon sources, nitrogen sources, inorganic salts and fermentation time was investigated. Optimum culture broth for $\gamma$-PGA production consisted of 3% glutamate, 3% glucose and various salts, resulting in the PGA production of 22.5 g/L by shaking culture for 72 hr at $37^{\circ}C$. Average molecular weight of $\gamma$-PGA was determined to be 1,220 kDa through MALLS analysis. The $\gamma$-PGA solution showed a typical pseudoplastic flow behavior, and a great decrease in consistency below pH 6.0 regardless of the same molecular weight of $\gamma$-PGA. The molecular weights of isolated $\gamma$-PGA were drastically decreased by heat treatment in various acidic conditions, resulting in different hydrolysis of $\gamma$-PGA. The consistency of $\gamma$-PGA solution was greatly decreased with increase heating time in acidic conditions.

Poly-γ-Glutamic Acid 고생성 Bacillus spp. 균주의 분리 및 발효특성 (Isolation and Characterization of Bacillus spp. with High-Level Productivity of Poly-γ-Glutamic Acid)

  • 심상협;박홍진;오현화;정도연;송근섭;김영수
    • 한국식품영양과학회지
    • /
    • 제46권9호
    • /
    • pp.1114-1121
    • /
    • 2017
  • 전통장류로부터 식품 유해요소를 생성하지 않는 Bacillus 균주를 분리하여 세포외효소 활성(amylase, protease, cellulase, xylanase)을 측정한 후, 단백질 분해 활성이 우수한 14개 균주와 비교균주 1균주를 선발하였다. 선발된 균주에 대해 16S rRNA 유전자를 이용한 균주 동정을 실시한 결과, B. amyloliquefaciens 10종, B. methylotrophicus 1종, B. velezensis 1종, B. subtilis 3종이 분리 동정되었다. 그중 B. subtilis JBG17019, B. amyloliquefaciens JBD17076, B. amyloliquefaciens JBD17109 균주에서 식중독미생물에 대한 증식 억제능이 확인되었다. Glutamic acid 대사와 관련한 발효특성을 확인하기 위하여 선발된 Bacillus 균주에 대해 glutamate, glutamine 및 ${\gamma}$-PGA 생성능을 측정하였다. 발효특성과 ${\gamma}$-PGA 생성능에 대한 다변량 요인분석을 주성분(PCA) 추출법으로 분석한 결과, PC1(효소 활성(amylase, cellulase, xylanase), PC2(${\gamma}$-PGA 생성능) 및 PC3(protease, glutamate 및 glutamine)의 3가지 주성분이 분류되었다. 주성분(PC)의 추출에 따라 B. amyloliquefaciens JBD17076 및 B. subtilis JBG17019 균주는 우수한 효소 활성 및 ${\gamma}$-PGA 생성을 하는 것으로 평가되었다.

생체적합성 공중합체의 합성과 물성에 관한 연구 -Block Copoly (L-Lactde-$\gamma$-Benzyl-L-Glutamate)- (Synthesis and Characterization of Biocompatible Block Copoly (L-Lactde-$\gamma$-Benzyl-L-Glutamate))

  • 성용길;김훈;송대경;김영순;백우현
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권2호
    • /
    • pp.215-224
    • /
    • 1988
  • Block copoly(L-lactide-${\gamma}$-benzyl-L-glutamate)was synthesized from L-lactide by cationic ring opening polymerization and ${\gamma}$-benzyl-L-glutamate N-carboxy anhydride by introducing amino group terminated poly(L-lactide). L-lactide was polymerized in the presence of stannous octate at $110^{\circ}C$ and ${\gamma}$-benzyl- L-glutamate was polymerized in the presence of NaH at room temperature. The synthesized monomers and copolymers were identified by IR and NMR. The Itermal properties of the copolymers were characterized by differential scanning calorimetry and thermogravimetry. The thermal stability and melting temperature(Tm) of the block copolymers were measured and discussed. The activation energies of thermal decomposition for the block copoly(L-lactide-${\gamma}$ benzyl-L-glutamate) were evaluated from the thermogravimetric data by Freeman and Carroll method.

  • PDF

Norfloxacin Release from Polymeric Micelle of Poly($\gamma$-benzyl L-glutamate)/Poly(ethylene oxide)/Poly($\gamma$-benzyl L-glutamate)/ Block Copolymer

  • 나재운;정영일;조종수
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.962-967
    • /
    • 1998
  • Block copolymers consisting of poly(rbenzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Polymeric micelles of the block copolymers (abbreviated GEG) were prepared by a dialysis method. The GEG block copolymers were associated in water to form polymeric micelles, and the critical micelle concentration (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed polymeric micelles of spherical shapes. From dynamic light scattering (DLS) study, sizes of polymeric micelles of GEG-1, GEG-2, and GEG-3 copolymer were 106.5±59.2 nm, 79.4±46.0 nm, and 37.9±13.3 nm, respectively. The drug loading contents of GEG-1, GEG-2 and GEG-3 polymeric micelles were 12.6, 11.9, and 11.0 wt %, respectively. These results indicated that the drugloading contents were dependent on PBLG chain length in the copolymer; the longer the PBLG chain length, the more the drug-loading contents. Release of norfloxacin (NFX) from the nanoparticles was slower in higher loading contents of NFX than in lower loading contents due to the hydrophobic interaction between PBLG core and NFX.

Combination of Poly-Gamma-Glutamate and Cyclophosphamide Enhanced Antitumor Efficacy Against Tumor Growth and Metastasis in a Murine Melanoma Model

  • Kim, Doo-Jin;Kim, Eun-Jin;Lee, Tae-Young;Won, Ji-Na;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1339-1346
    • /
    • 2013
  • Conventional chemotherapeutic regimens often accompany severe side effects and fail to induce complete regression of chemoresistant or relapsing metastatic cancers. The need for establishing more efficacious anticancer strategies led to the development of a combined modality treatment of chemotherapy in conjunction with immunotherapy or radiotherapy. It has been reported that poly-gamma-glutamate (${\gamma}$-PGA), a natural polymer composed of glutamic acids, increases antitumor activity by activating antigen-presenting cells and natural killer (NK) cells. Here, we investigated the antitumor effect of ${\gamma}$-PGA in combination with cyclophosphamide in a murine melanoma model. Whereas cyclophosphamide alone directly triggered apoptosis of tumor cells in vitro, ${\gamma}$-PGA did not show cytotoxicity in tumor cells. Instead, it activated macrophages, as reflected by the upregulation of surface activation markers and the secretion of proinflammatory factors, such as nitric oxide and tumor necrosis factor ${\alpha}$. When the antitumor effects were examined in a mouse model, combined treatment with cyclophosphamide and ${\gamma}$-PGA markedly suppressed tumor growth and metastasis. Notably, ${\gamma}$-PGA treatment dramatically increased the NK cell population in lung tissues, coinciding with decreased metastasis and increased survival. These data collectively suggest that ${\gamma}$-PGA can act as an immunotherapeutic agent that exhibits a synergistic antitumor effect in combination with conventional chemotherapy.

Synthesis and Characterization of Poly(alkyl $\alpha$, L-glutamate-co-ethylene oxide)

  • Kim, Gunwoo;Kim, Jin-Yeol;Daewon Sohn;Lee, Youngil
    • Macromolecular Research
    • /
    • 제10권1호
    • /
    • pp.49-52
    • /
    • 2002
  • Rod-coil amphiphilic block copolymers, PALG-PEOs, poly(alkyl $\alpha$, L-glutamate-co-ethylene oxide)s, were successfully synthesized in three steps: 1) esterification of L-glutamic acid, 2) synthesis of ${\gamma}$-alkyl L-gultamate N-carboxyanhydride, and 3) polymerization of NCA monomers. These molecules form polymeric micelles with the hydrophobic core and hydrophilic corona in aqueous solution, which were characterized by light scattering and static fluorescence measurement.

An Unusual Bioconjugate of Glycerol and Poly(${\gamma}$-Glutamic Acid) Produced by Bacillus subtilis C1

  • SHIH ING-LUNG;WU JANE-YII;WU PEI-JEN;SHEN MING-HAU
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.919-923
    • /
    • 2005
  • A bacterium capable of poly(${\gamma}$-glutamic acid) production was isolated from nonpasteurized soy sauce. It was judged to be a variety of Bacillus subtilis and designated as B. subtilis C1. B. subtilis C1 produced ${\gamma}$-PGA in the absence of exogenous glutamic acid; therefore, it is a de novo PGA­producing bacterium. The product produced by B. subtilis C1 was characterized by amino acid analysis to be composed of solely glutamic acid. However, the $H^1-NMR$ spectra showed chemical shifts of glycerol protons in addition to those of authentic ${\gamma}$-PGA, indicating that the product is in fact a bioconjugate of ${\gamma}$-PGA. The finding is unique, because the microbial production of ${\gamma}$-PGA bioconjugate has never been reported before. The molecular mass of the product was over 10,000 kDa as determined by GPC, and $97\%$ of the product was D-glutamate, indicating that L-glutamate was converted to its D-form counterpart by B. subtilis C1.