References
-
Shih IL, Van YT. 2001. The production of poly(
${\gamma}$ -glutamic acid) from microorganisms and its various applications. Bioresour Technol 79: 207-225 https://doi.org/10.1016/S0960-8524(01)00074-8 - Thorne CB, Gomez CG, Noyes HE, Husewright RD. 1954. Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol 68: 307-315 https://doi.org/10.1002/path.1700680145
-
Troy FA. 1973. Chemistry and biosynthesis of poly(
${\gamma}$ -glutamyl) capsule in Bacillus licheniformis: properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248: 305-315 -
Liang HF, Yand TF, Huang CT, Chen MC, Sung HW. 2005. Preparation of nanoparticles composed of poly(
${\gamma}$ -glutamic acid)-poly(lactide) block copolymers and evaluations of their uptake by HepG2 cells. J Control Release 105: 213-225 https://doi.org/10.1016/j.jconrel.2005.03.021 - Richard A, Margaritis A. 2001. Poly(glutamic acid) for biomedical applications. Crit Rev Biotechnol 21: 219-232 https://doi.org/10.1080/07388550108984171
- Otani Y, Tabata Y, Ikada Y. 1996. Rapidly curable biological glue composed of gelatin and poly(l-glutamic acid). Biomaterials 17: 1387-1391 https://doi.org/10.1016/0142-9612(96)87279-6
- Sekine T, Nakamura T, Shimizu Y, Ueda H, Matsumoto K, Takimoto Y, Kiyotani T. 2000. A new type of surgical adhesive made from porcine collagen and polyglutamic acid. J Biomed Mater Res 35: 305-310 https://doi.org/10.1002/1097-4636(200102)54:2<305::AID-JBM18>3.0.CO;2-B
-
Borbely M, Nagasaki Y, Borbely J, Fan K, Bhogle A, Sevoian M. 1994. Biosynthesis and chemical modification of poly(
${\gamma}$ -glutamic acid). Polym Bull 32: 127-132 https://doi.org/10.1007/BF00306378 - Park YJ, Liang J, Yang Z, Yang VC. 2001. Controlled release of clot-dissolving tissue-type plasmmogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel. J Control Relese 74: 243-247 https://doi.org/10.1016/S0168-3659(01)00323-6
-
Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T, Misono H. 2001. Isolation of Bacillus subtilis (chungkookjang), a poly-
${\gamma}$ -glutamate producer with high genetic mompetence. Appl Microbiol Biotechnol 57: 764-769 https://doi.org/10.1007/s00253-001-0848-9 - Inatsu Y, Kimura K, Itoh Y. 2002. Characterization of Bacillus subtilis strains isolated form fermented soybean foods in Southeast Asia: Comparison with B. subtilis (natto) starter strains. Jpn Agric Res Q 36: 169-175 https://doi.org/10.6090/jarq.36.169
-
Oh SM, Jang EK, Seo JH, Ryu MJ, Lee SP. 2007. Characterization of the
${\gamma}$ -polyglutamic acid produced from the solid-state fermentation of soybean milk cake using Bacillus sp. Food Sci Biotechnol 16: 509-514 -
Akagi T, Kaneko T, Kida T, Akashi M. 2005. Preparation and characterization of biodegradable nanoparticles based on poly(
${\gamma}$ -glutamic acid) with${\iota}$ -phenylalanine as a protein carrier. J Control Release 108: 226-236 https://doi.org/10.1016/j.jconrel.2005.08.003 - Ye H, Jin L, Hu R, Yi Z, Li J, Wu Y, Xi X, Wu Z. 2006. Poly(r,L-glutamic acid)-cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 27: 5958-5965 https://doi.org/10.1016/j.biomaterials.2006.08.016
- Seo JH, Lee SP. 2004. Optimization of the production of fibrinolytic enzyme from Bacillus firmus NA-1 in fermented soybeans. J Food Sci Nutr 9: 14-20 https://doi.org/10.3746/jfn.2004.9.1.014
-
Goto A, Kunioka M. 1992. Biosynthesis and hydrolysis of poly(
${\gamma}$ -glutamic acid) from Bacillus subtilis IFO3335. Biosci Biotechnol Biochem 56: 1031-1035 https://doi.org/10.1271/bbb.56.1031 - Thompson JD, Higgins DG, Gibson TJ, Clustal W. 1994. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalies and weight matrix choice. Nucleic Acids Res 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
- Choi JI, Lee SY. 2004. High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol Bioprocess Eng 9: 196-200 https://doi.org/10.1007/BF02942292
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- McNeil B, Harvey LM. 1993. Viscous fermentation products. Crit Rev Biotechnol 13: 275-304 https://doi.org/10.3109/07388559309075699
- You S, Fiedorwicz M, Lim ST. 1999. Molecular characterization of wheat amylopectins by multiangle laser light scattering analysis. Cereal Chem 96: 116-121 https://doi.org/10.1094/CCHEM.1999.76.1.116
- Hong X, Min J, Hui L, Dingqiang L, Pingkai O. 2005. Efficient production of poly(γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Proc Biochem 40: 519-523 https://doi.org/10.1016/j.procbio.2003.09.025
- Kelessidis VC, Maglione R. 2006. Modeling rhelogical behavior of bentonite suspensions as Casson and Robertson-Stiff fluids using Newtonian and true shear rates in Couette viscometry. Powder Technol 168: 134-147 https://doi.org/10.1016/j.powtec.2006.07.011
-
Ito Y, Tanaka T, Ohmachi T, Asada Y. 1996. Glutamic acid independent production of poly(
${\gamma}$ https://doi.org/10.1271/bbb.60.1239-glutamic acid) by Bacillus subtilis TAM-4. Biosci Biotechnol Biochem 60: 1239-1242 -
Cromwick AM, Gross RA. 1995. Effect of manganese (II) on Bacillus lichniformis ATCC9945A physiology and
${\gamma}$ -poly(glutamic acid) formation. Int J Biol Macromol 16: 265-275 https://doi.org/10.1016/0141-8130(94)90032-9 - Leonard CG, Housewright RD, Throne CB. 1958. Effect of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J Bacteriol 76: 499-503
-
Suzuki T, Tahara Y. 2003. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in
${\gamma}$ -polyglutamic acid degradation. J Bacteriol 185: 2379-2382 https://doi.org/10.1128/JB.185.7.2379-2382.2003 -
Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M. 1993. Production of poly(
${\gamma}$ -glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotechnol Biochem 57: 1212-1213 https://doi.org/10.1271/bbb.57.1212 -
Kunioka M, Goto A. 1994. Biosynthesis of poly(
${\gamma}$ -glutamic acid) from l-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO 3335. Appl Microbiol Biotechnol 40: 867-872 https://doi.org/10.1007/BF00173990 -
Kunioka M, Furusawa K. 1997. Poly(
${\gamma}$ -glutamic acid) hydrogel prepared form microbial poly(${\gamma}$ -glutamic acid) and alkane diamine with water-soluble carbodiimide. J Appl Polym Sci 65: 1889-1893 https://doi.org/10.1002/(SICI)1097-4628(19970906)65:10<1889::AID-APP5>3.0.CO;2-B - Scolnik Y, Portnaya I, Cogan U, Tal S, Haimovitz R, Fridkin M, Elitzur AC, Deamer DW, Shinitzky M. 2006. Subtle differences in structural transitions between poly-land poly-d-amino acids of equal length in water. Phys Chem Chem Phys 8: 333-339 https://doi.org/10.1039/b513974k
-
Zanuy D, Aleman C, Munoz-Guerra S. 1998. On the helical conformation of un-ionized poly(
${\gamma}$ -D-glutamic acid). Int J Biol Macromol 23: 175-184 https://doi.org/10.1016/S0141-8130(98)00047-6
Cited by
- An injectable collagen/poly(γ-glutamic acid) hydrogel as a scaffold of stem cells and α-lipoic acid for enhanced protection against renal dysfunction vol.5, pp.2, 2017, https://doi.org/10.1039/C6BM00711B
- Production of Carrot Pomace Fortified with Mucilage, Fibrinolytic Enzyme and Probiotics by Solid-state Fermentation Using the Mixed Culture of Bacillus subtilis and Leuconostoc mesenteroides vol.14, pp.4, 2009, https://doi.org/10.3746/jfn.2009.14.4.335
- Optimized Production of GABA and γ-PGA in a Turmeric and Roasted Soybean Mixture Co-fermented by Bacillus subtilis and Lactobacillus plantarum vol.22, pp.2, 2016, https://doi.org/10.3136/fstr.22.209
- Novel bioconversion of sodium glutamate to γ-poly-glutamic acid and γ-amino butyric acid in a mixed fermentation using Bacillus subtilis HA and Lactobacillus plantarum K154 vol.23, pp.5, 2014, https://doi.org/10.1007/s10068-014-0211-4
- Fortification of Bioactive Compounds in Roasted Wheat Bran by Solid-State Fermentation Using Bacillus subtilis HA vol.23, pp.3, 2017, https://doi.org/10.3136/fstr.23.395
- Evaluation of Radical Scavenging Activity and Physical Properties of Textured Vegetable Protein Fermented by Solid Culture with Bacillus subtilis HA According to Fermentation Time vol.39, pp.6, 2010, https://doi.org/10.3746/jkfn.2010.39.6.872
- Physicochemical and functional properties of roasted soybean flour, barley, and carrot juice mixture fermented by solid-state fermentation using Bacillus subtilis HA vol.20, pp.6, 2011, https://doi.org/10.1007/s10068-011-0209-0
- Influences of Culture Medium Components on the Production Poly (γ-Glutamic Acid) by Bacillus subtilis GS-2 Isolated Chungkookjang vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.677
- Anti-obesity Effects of Black Bean Chungkugjang Extract in 3T3-L1 Adipocytes and Obese Mice Induced by High Fat Diet vol.40, pp.9, 2011, https://doi.org/10.3746/jkfn.2011.40.9.1235
- Fortification of Mucilage and GABA in Hovenia dulcis Extract by Co-fermentation with Bacillus subtilis HA and Lactobacillus plantarum EJ2014 vol.24, pp.2, 2018, https://doi.org/10.3136/fstr.24.265
- Novel Co-fermentation of Dendropanax morbifera Extract to Produce γ-aminobutyric Acid and Poly-γ-glutamic Acid vol.25, pp.6, 2019, https://doi.org/10.3136/fstr.25.785