DOI QR코드

DOI QR Code

Isolation and Characterization of Bacillus spp. with High-Level Productivity of Poly-γ-Glutamic Acid

Poly-γ-Glutamic Acid 고생성 Bacillus spp. 균주의 분리 및 발효특성

  • Sim, SangHyeob (Department of Food Science and Technology, Chonbuk National University) ;
  • Park, Hong-Jin (Department of Food Science and Technology, Chonbuk National University) ;
  • Oh, HyeonHwa (Department of Food Science and Technology, Chonbuk National University) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Song, Geun-Seoup (Department of Food Science and Technology, Chonbuk National University) ;
  • Kim, Young-Soo (Department of Food Science and Technology, Chonbuk National University)
  • 심상협 (전북대학교 식품공학과) ;
  • 박홍진 (전북대학교 식품공학과) ;
  • 오현화 (전북대학교 식품공학과) ;
  • 정도연 ((재)발효미생물산업진흥원) ;
  • 송근섭 (전북대학교 식품공학과) ;
  • 김영수 (전북대학교 식품공학과)
  • Received : 2017.06.20
  • Accepted : 2017.08.02
  • Published : 2017.09.30

Abstract

Bacillus strains not producing harmful components were isolated from Korean traditional soybean products. Extracellular enzyme activities (amylase, protease, cellulase, and xylanase) of isolated Bacillus strains were measured, and Bacillus strains with high protease activity were selected. The selected 15 strains were identified as Bacillus amyloliquefaciens (10), Bacillus methylotrophicus (1), Bacillus velezensis (1), and Bacillus subtilis (3). Among them, B. subtilis JBG17019, B. amyloliquefaciens JBD17076, and B. amyloliquefaciens JBD17109 showed antimicrobial activities against food-borne microorganisms. The production abilities of glutamate, glutamine, and poly-${\gamma}$-glutamic acid (${\gamma}$-PGA) of the selected Bacillus strains were measured to analyze fermentation characteristics related to glutamic acid metabolism. The factor for multivariate was analyzed by the principal components analysis (PCA) method between fermentation characteristics and ${\gamma}$-PGA production. The three principal components were classified according to the PCA method: PC1 [enzyme activity (amylase, cellulase, and xylanase)], PC2 (${\gamma}$-PGA), and PC3 (protease, glutamate, and glutamine). As a result, B. amyloliquefaciens JBD17076 and B. subtilis JBG17019 strains were evaluated as having excellent enzyme activity and ${\gamma}$-PGA production.

전통장류로부터 식품 유해요소를 생성하지 않는 Bacillus 균주를 분리하여 세포외효소 활성(amylase, protease, cellulase, xylanase)을 측정한 후, 단백질 분해 활성이 우수한 14개 균주와 비교균주 1균주를 선발하였다. 선발된 균주에 대해 16S rRNA 유전자를 이용한 균주 동정을 실시한 결과, B. amyloliquefaciens 10종, B. methylotrophicus 1종, B. velezensis 1종, B. subtilis 3종이 분리 동정되었다. 그중 B. subtilis JBG17019, B. amyloliquefaciens JBD17076, B. amyloliquefaciens JBD17109 균주에서 식중독미생물에 대한 증식 억제능이 확인되었다. Glutamic acid 대사와 관련한 발효특성을 확인하기 위하여 선발된 Bacillus 균주에 대해 glutamate, glutamine 및 ${\gamma}$-PGA 생성능을 측정하였다. 발효특성과 ${\gamma}$-PGA 생성능에 대한 다변량 요인분석을 주성분(PCA) 추출법으로 분석한 결과, PC1(효소 활성(amylase, cellulase, xylanase), PC2(${\gamma}$-PGA 생성능) 및 PC3(protease, glutamate 및 glutamine)의 3가지 주성분이 분류되었다. 주성분(PC)의 추출에 따라 B. amyloliquefaciens JBD17076 및 B. subtilis JBG17019 균주는 우수한 효소 활성 및 ${\gamma}$-PGA 생성을 하는 것으로 평가되었다.

Keywords

References

  1. You KO, Oh YN, Kim BW, Nam SW, Jeon SH, Kim DE, Kim YM, Kwon HJ. 2005. Isolation of Bacillus sp. producing poly-${\gamma}$-glutamic acid with high efficiency and its characterization. Korean J Microbiol Biotechnol 33: 200-206.
  2. Kimura K, Tran LSP, Do TH, Itoh Y. 2009. Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Biosci Biotechnol Biochem 75: 1149-1155.
  3. Goto A, Kunioka M. 1992. Biosynthesis and hydrolysis of poly (${\gamma}$-glutamic acid) from Bacillus subtilis IFO3335. Biosci Biotechnol Biochem 56: 1031-1035. https://doi.org/10.1271/bbb.56.1031
  4. Kim YM. 2007. Production and characterization of ${\gamma}$-PGA produced by Bacillus subtilis GS-2 from Chungkookjang. MS Thesis. Konkuk University, Seoul, Korea. p 9-11.
  5. Ju D. 2010. Anti-obese effects of dietary poly gamma glutamate in diet induced obese rats. MS Thesis. Kookmin University, Seoul, Korea. p 13-17.
  6. Moon JA, Wang SG, Oh SY. 2013. Antidiabetic effect of soybean and chunggukjang, ${\gamma}$-PGA powder diet in streptozotocin-induced diabetic rats. J Korean Entertainment Ind Assoc 7(3): 263-276. https://doi.org/10.21184/jkeia.2013.09.7.3.263
  7. Lee KH, Sim MO, Song YS, Jung HK, Jang JH, Kim MS, Kim TM, Lee HE, An BK, Jung WS. 2016. Effects of polygamma glutamate contents Cheonggukjang on osteoblast differentiation. J Korean Soc Food Sci Nutr 45: 664-670. https://doi.org/10.3746/jkfn.2016.45.5.664
  8. Park C, Sung MH. 2009. New bioindustrial development of high molecular weight of poly-gamma-glutamic acid produced by Bacillus subtilis (chungkookjang). Polym Sci Technol 20: 440-446.
  9. Kunioka M. 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol 47: 469-475. https://doi.org/10.1007/s002530050958
  10. Lee CH. 1973. Studies on the amino acid composition of Korean fermented soybean Meju products and the evaluation of the protein quality. Korean J Food Sci Technol 5: 210-214.
  11. Ogawa Y, Yamaguchi F, Yuasa K, Tahara Y. 2014. Efficient production of ${\gamma}$-polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci Biotechnol Biochem 61: 1684-1687.
  12. Ahn YS, Kim YS, Shin DH. 2006. Isolation, identification, and fermentation characteristics of Bacillus sp. with high protease activity from traditional Cheonggukjang. Korean J Food Sci Technol 38: 82-87.
  13. Bang BH, Jeong EJ, Rhee MS, Kim YM, Yi DH. 2011. Isolation of Bacillus subtilis GS-2 producing ${\gamma}$-PGA from Chungkukjang bean paste and identification of ${\gamma}$-PGA. J Appl Biol Chem 54: 1-6. https://doi.org/10.3839/jabc.2011.001
  14. Kim YS, Jeong JO, Cho SH, Jeong DY, Uhm TB. 2012. Antimicrobial and biogenic amine-degrading activity of Bacillus licheniformis SCK B11 isolated from traditionally fermented red pepper paste. J Microbiol 48: 163-170.
  15. Moon JY, Kwon SW, Hong SB, Seok SJ, Kim JS, Kim SJ. 2015. Characteristics and functional analysis of Bacillus strains from the fermented soybean products, Cheonggukjang. J Microbiol 51: 300-307.
  16. Lee ES, Song YJ, Kim KP, Yim EJ, Jeong DY, Cho SH. 2015. Manufacturing and qualify characteristics of the Cheonggukjang fermented using starter derived from rice straw removed Bacillus cereus selectively. J Food Hyg Saf 30: 65-73. https://doi.org/10.13103/JFHS.2015.30.1.65
  17. Chang M, Chang HC. 2012. Development of a screening method for biogenic amine producing Bacillus spp.. Int J Food Microbiol 153: 269-274. https://doi.org/10.1016/j.ijfoodmicro.2011.11.008
  18. Baek HJ, Zo YG, Ahn TS. 2009. Hydrolytic and metabolic capacities of thermophilic Geobacillus isolated from litter deposit of a lakeshore. Korean J Microbiol 1: 32-40.
  19. Yoon YM, An GH, Kim JK, Ahn SH, Cha YL, Yang J, Yu KD, Ahn JW, Moon YH, Koo BC, Choi IH. 2014. Xylanase activity of Bacillus pumilus H10-1 isolated from Ceratotherium simum feces. Korean Soc Biotechnol Bioeng J 29: 316-322.
  20. Vermelho AB, Meirelles MNL, Lopes A, Petinate SDG, Chaia AA, Branquinha MH. 1996. Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz 91: 755-760. https://doi.org/10.1590/S0074-02761996000600020
  21. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J Comput Biol 7: 203-214. https://doi.org/10.1089/10665270050081478
  22. Thompson JD, Higgins DG, Gibson TJ. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  23. Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512-526.
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  25. Lee HJ, Kim JY, Lee JG, Hong SS. 2014. Biological control of lettuce sclerotinia rot by Bacillus subtilis GG95. Korean J Mycol 42: 225-230. https://doi.org/10.4489/KJM.2014.42.3.225
  26. Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S. 2016. Microbial synthesis of poly-${\gamma}$-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels 9: 134. https://doi.org/10.1186/s13068-016-0537-7
  27. Marini JC. 2016. Interrelationships between glutamine and citrulline metabolism. Curr Opin Clin Nutr Metab Care 19: 62-66. https://doi.org/10.1097/MCO.0000000000000233