• Title/Summary/Keyword: pluripotent

Search Result 210, Processing Time 0.03 seconds

Guidelines for Manufacturing and Application of Organoids: Kidney

  • Hyun Mi Kang;Dong Sung Kim;Yong Kyun Kim;Kunyoo Shin;Sun-Ju Ahn;Cho-Rok Jung
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.141-146
    • /
    • 2024
  • Recent advancements in organoid technology have led to a vigorous movement towards utilizing it as a substitute for animal experiments. Organoid technology offers versatile applications, particularly in toxicity testing of pharmaceuticals or chemical substances. However, for the practical use in toxicity testing, minimal guidance is required to ensure reliability and relevance. This paper aims to provide minimal guidelines for practical uses of kidney organoids derived from human pluripotent stem cells as a toxicity evaluation model in vitro.

Developmental Characteristics of Cloned Embryos Reconstructed with Induced Pluripotent Stem Cells in Pigs (돼지 유도만능줄기세포 유래 복제란의 특성 분석)

  • Kwon, Dae-Jin;Oh, Jae-Don;Park, Mi-Ryung;Hwang, In-Sul;Park, Eung Woo;Hwang, Seongsoo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.232-239
    • /
    • 2019
  • In general, cloned pigs have been produced using the somatic cell nuclear transfer (SCNT) technique with various types of somatic cells; however, the SCNT technique has disadvantages not only in its low efficiency but also in the development of abnormal clones. This study aimed to compare early embryonic development and quality of SCNT embryos with those of induced pluripotent stem cells (iPSCs) NT embryos (iPSC-NTs). Ear fibroblast cells were used as donor cells and iPSCs were generated from these cells by lentiviral transduction with human six factors (Oct4, Sox2, c-Myc, Nanog, Klf4 and Lin28). Blastocyst formation rate in iPSC-NT (23/258, 8.9%) was significantly lower than that in SCNT (46/175, 26.3%; p < 0.05). Total cell number in blastocysts was similar between two groups, but blastocysts in iPSC-NT had a lower number of apoptotic cells than in SCNT (2.0 ± 0.6 vs. 9.8 ± 2.9, p < 0.05). Quantitative PCR data showed that apoptosis-related genes (bax, caspase-3, and caspase-9) were highly expressed in SCNT than iPSC-NT (p < 0.05). Although an early development rate was low in iPSC-NT, the quality of cloned embryos from porcine iPSC was higher than that of embryos from somatic cells. Therefore, porcine iPSCs could be used as a preferable cell source to create a clone or transgenic animals by using the NT technique.

Construction of 3D Culture Medium with Elastin-like Polypeptide (ELP) Hydrogel for Human Pluripotent Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Donjgu
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have lots of potential in biomedical sciences owing to its potential to differentiate into any kind of cells in the body. However, it is still a challenge to culture PSCs on a large scale for application to regenerative medicine. Herein, we introduce a synthetic polymer that enables large-scale suspension culture of human PSCs. By employing suspension culture, it became unnecessary to use conventional substrata such as mouse embryonic fibroblast (MEF) or Matrigel$^{TM}$, which are believed to be main causative sources of xenogeneic contamination in cultured human PSCs in vitro. Human PSCs were cultured in the medium in which elastin-like polypeptide (ELP) dissolved. The ELP in the medium became harden as temperature increases by transforming the medium into a semi-solid gel that supported growth of human PSCs in suspension. Gel-sol transition temperature of ELP can be adjusted by modifying the peptide sequence in which 5 amino acids, Val-Pro-Gly-Xaa-Gly, repeated sequentially. We constructed 3D suspension media having transition temperature around $33{\sim}35^{\circ}C$ using an ELP consisted of 40, 60, or 80 repeats of a monomer, which was Val-Pro-Gly-Val-Gly. Among the ELPs, ELP80 was chosen as the best ELP to support growth of human PSCs in suspension culture. This result suggests that the ELP80 can be a medium component for culturing human PSCs in large-scale.

Induced Pluripotent Stem Cell Generation using Nonviral Vector

  • Park, Si-Jun;Shin, Mi-Jung;Seo, Byoung-Boo;Park, Hum-Dai;Yoon, Du-Hak;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by etopic expression of transcription factors. iPS cells are indistinguishable from ES cells in terms of morphology and stem cell marker expression. Moreover, mouse iPS cells give rise to chimeric mice that are competent for germline transmission. However, mice derived from iPS cells often develop tumors. Furthermore, the low efficiency of iPS cell generation is a big disadvantage for mechanistic studies. Nonviral plasmid.based vectors are free of many of the drawbacks that constrain viral vectors. The histone deacetylase inhibitor valproic acid (VPA) has been shown to improve the efficiency of mouse and human iPS cell generation, and vitamin C (Vc) accelerates gene expression changes and establishment of the fully reprogrammed state. The MEK inhibitor PD0325901 (Stemgent) has been shown to increase the efficiency of the reprogramming of human primary fibroblasts into iPS cells. In this report, we described the generation of mouse iPS cells devoid of exogenous DNA by the simple transient transfection of a nonviral vector carrying 2A-peptide-linked reprogramming factors. We used VPA, Vc, and the MEK inhibitor PD0325901 to increase the reprogramming efficiency. The reprogrammed somatic cells expressed pluripotency markers and formed EBs.

Mitochondrial genome mutations in mesenchymal stem cells derived from human dental induced pluripotent stem cells

  • Park, Jumi;Lee, Yeonmi;Shin, Joosung;Lee, Hyeon-Jeong;Son, Young-Bum;Park, Bong-Wook;Kim, Deokhoon;Rho, Gyu-Jin;Kang, Eunju
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.689-694
    • /
    • 2019
  • Ethical and safety issues have rendered mesenchymal stem cells (MSCs) popular candidates in regenerative medicine, but their therapeutic capacity is lower than that of induced pluripotent stem cells (iPSCs). This study compared original, dental tissue-derived MSCs with re-differentiated MSCs from iPSCs (iPS-MSCs). CD marker expression in iPS-MSCs was similar to original MSCs. iPS-MSCs expressed higher in pluripotent genes, but lower levels in mesodermal genes than MSCs. In addition, iPS-MSCs did not form teratomas. All iPSCs carried mtDNA mutations; some shared with original MSCs and others not previously detected therein. Shared mutations were synonymous, while novel mutations were non-synonymous or located on RNA-encoding genes. iPS-MSCs also harbored mtDNA mutations transmitted from iPSCs. Selected iPS-MSCs displayed lower mitochondrial respiration than original MSCs. In conclusion, screening for mtDNA mutations in iPSC lines for iPS-MSCs can identify mutation-free cell lines for therapeutic applications.

Ground-State Conditions Promote Robust Prdm14 Reactivation and Maintain an Active Dlk1-Dio3 Region during Reprogramming

  • Habib, Omer;Habib, Gizem;Moon, Sung-Hwan;Hong, Ki-Sung;Do, Jeong Tae;Choi, Youngsok;Chang, Sung Woon;Chung, Hyung-Min
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.31-35
    • /
    • 2014
  • Induced pluripotent stem cells (iPSCs) are capable of unlimited self-renewal and can give rise to all three germ layers, thereby providing a new platform with which to study mammalian development and epigenetic reprogramming. However, iPSC generation may result in subtle epigenetic variations, such as the aberrant methylation of the Dlk1-Dio3 locus, among the clones, and this heterogeneity constitutes a major drawback to harnessing the full potential of iPSCs. Vitamin C has recently emerged as a safeguard to ensure the normal imprinting of the Dlk1-Dio3 locus during reprogramming. Here, we show that vitamin C exerts its effect in a manner that is independent of the reprogramming kinetics. Moreover, we demonstrate that reprogramming cells under 2i conditions leads to the early upregulation of Prdm14, which in turn results in a highly homogeneous population of authentic pluripotent colonies and prevents the abnormal silencing of the Dlk1-Dio3 locus.

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

  • Moon, Sung-Hwan;Bae, Daekyeong;Jung, Taek-Hee;Chung, Eun-Bin;Jeong, Young-Hoon;Park, Soon-Jung;Chung, Hyung-Min
    • International Journal of Stem Cells
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells

  • Choi, Won-Young;Hwang, Ji-Hyun;Cho, Ann-Na;Lee, Andrew J.;Jung, Inkyung;Cho, Seung-Woo;Kim, Lark Kyun;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1011-1022
    • /
    • 2020
  • Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.

In vitro maturation of human pluripotent stem cell-derived cardiomyocyte: A promising approach for cell therapy

  • Park, Yun-Gwi;Son, Yeo-Jin;Moon, Sung-Hwan;Park, Soon-Jung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.67-79
    • /
    • 2022
  • Currently, there is no treatment to reverse or cure heart failure caused by ischemic heart disease and myocardial infarction despite the remarkable advances in modern medicine. In addition, there is a lack of evidence regarding the existence of stem cells involved in the proliferation and regeneration of cardiomyocytes in adult hearts. As an alternative solution to overcome this problem, protocols for differentiating human pluripotent stem cell (hPSC) into cardiomyocyte have been established, which further led to the development of cell therapy in major leading countries in this field. Recently, clinical studies have confirmed the safety of hPSC-derived cardiac progenitor cells (CPCs). Although several institutions have shown progress in their research on cell therapy using hPSC-derived cardiomyocytes, the functions of cardiomyocytes used for transplantation remain to be those of immature cardiomyocytes, which poses a risk of graft-induced arrhythmias in the early stage of transplantation. Over the last decade, research aimed at achieving maturation of immature cardiomyocytes, showing same characteristics as those of mature cardiomyocytes, has been actively conducted using various approaches at leading research institutes worldwide. However, challenges remain in technological development for effective generation of mature cardiomyocytes with the same properties as those present in the adult hearts. Therefore, in this review, we provide an overview of the technological development status for maturation methods of hPSC-derived cardiomyocytes and present a direction for future development of maturation techniques.