Induced Pluripotent Stem Cell Generation using Nonviral Vector

  • Park, Si-Jun (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Shin, Mi-Jung (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Seo, Byoung-Boo (Dept. of Animal Resources, College of Life & Environmental Science, Daegu University) ;
  • Park, Hum-Dai (Dept. of Biotechnology, College of Engineering, Daegu University) ;
  • Yoon, Du-Hak (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Ryoo, Zae-Young (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2011.11.10
  • Accepted : 2011.11.20
  • Published : 2011.12.31

Abstract

Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by etopic expression of transcription factors. iPS cells are indistinguishable from ES cells in terms of morphology and stem cell marker expression. Moreover, mouse iPS cells give rise to chimeric mice that are competent for germline transmission. However, mice derived from iPS cells often develop tumors. Furthermore, the low efficiency of iPS cell generation is a big disadvantage for mechanistic studies. Nonviral plasmid.based vectors are free of many of the drawbacks that constrain viral vectors. The histone deacetylase inhibitor valproic acid (VPA) has been shown to improve the efficiency of mouse and human iPS cell generation, and vitamin C (Vc) accelerates gene expression changes and establishment of the fully reprogrammed state. The MEK inhibitor PD0325901 (Stemgent) has been shown to increase the efficiency of the reprogramming of human primary fibroblasts into iPS cells. In this report, we described the generation of mouse iPS cells devoid of exogenous DNA by the simple transient transfection of a nonviral vector carrying 2A-peptide-linked reprogramming factors. We used VPA, Vc, and the MEK inhibitor PD0325901 to increase the reprogramming efficiency. The reprogrammed somatic cells expressed pluripotency markers and formed EBs.

Keywords

References

  1. Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007): Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1(3):245-7. https://doi.org/10.1016/j.stem.2007.08.008
  2. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005): Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122 (6):947-56. https://doi.org/10.1016/j.cell.2005.08.020
  3. Burns CE, Zon LI (2002): Portrait of a stem cell. Dev Cell 3(5):612-3. https://doi.org/10.1016/S1534-5807(02)00329-5
  4. Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, Wolf DP, Mitalipov SM (2007): Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497-502. https://doi.org/10.1038/nature06357
  5. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003): Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643-55. https://doi.org/10.1016/S0092-8674(03)00392-1
  6. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA (2008): Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22(6):746-55. https://doi.org/10.1101/gad.1642408
  7. Cowan CA, Atienza J, Melton DA, Eggan K (2005): Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309(5739): 1369-73. https://doi.org/10.1126/science.1116447
  8. Czyz J, Wiese C, Rolletschek A, Blyszczuk P, Cross M, Wobus AM (2003): Potential of embryonic and adult stem cells in vitro. Biol Chem 384(10-11): 1391-409.
  9. Desbaillets I, Ziegler U, Groscurth P, Gassmann M (2000): Embryoid bodies: an in vitro model of mouse embryogenesis. Exp Physio 185(6):645-51.
  10. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985): The in vitro development of blastocyst- derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27-45.
  11. Donovan PJ, Gearhart J (2001): The end of the beginning for pluripotent stem cells. Nature 414(6859): 92-7. https://doi.org/10.1038/35102154
  12. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010): Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6(1):71-9. https://doi.org/10.1016/j.stem.2009.12.001
  13. Evans MJ, Kaufman MH(1981): Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154-6. https://doi.org/10.1038/292154a0
  14. Gilbert S (1994): Developmental Biology. 4 ed. SINAUER, pp. 42-45.
  15. Gurdon JB, Elsdale TR, Fischberg M (1958): Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182 (4627):64-5. https://doi.org/10.1038/182064a0
  16. Hasegawa K, Cowan AB, Nakatsuji N, Suemori H (2007): Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells 25(7):1707-12. https://doi.org/10.1634/stemcells.2006-0813
  17. Hengge UR, Chan EF, Foster RA, Walker PS, Vogel JC (1995): Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Genet 10(2):161-6. https://doi.org/10.1038/ng0695-161
  18. Hengge UR, Walker PS, Vogel JC (1996): Expression of naked DNA in human, pig, and mouse skin. J Clin Invest 97(12):2911-6. https://doi.org/10.1172/JCI118750
  19. Hopfl G, Gassmann M, Desbaillets I (2004): Differentiating embryonic stem cells into embryoid bodies. Methods Mol Biol 254:79-98.
  20. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008): Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269-75. https://doi.org/10.1038/nbt.1502
  21. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008): Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26 (7):795-7. https://doi.org/10.1038/nbt1418
  22. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000): Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88-95.
  23. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009): Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771-5. https://doi.org/10.1038/nature07864
  24. Keller GM (1995): In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862-9. https://doi.org/10.1016/0955-0674(95)80071-9
  25. Lamba DA, Gust, J Reh TA (2009): Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4(1):73-9. https://doi.org/10.1016/j.stem.2008.10.015
  26. Lavial F, Acloque H, Bertocchini F, Macleod DJ, Boast S, Bachelard E, Montillet G, Thenot S, Sang HM, Stern CD, Samarut J, Pain B (2007): The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 134 (19):3549-63. https://doi.org/10.1242/dev.006569
  27. Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S (2009): A chemical platform for improved induction of human iPSCs. Nat Methods 6 (11):805-8. https://doi.org/10.1038/nmeth.1393
  28. Liu SP, Fu RH, Huang YC, Chen SY, Chien YJ, Hsu CY, Tsai CH, Shyu WC, Lin SZ (2011): Induced pluripotent stem (iPS) cell research overview. Cell Transplant 20(1):15-9. https://doi.org/10.3727/096368910X532828
  29. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH (2006): The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431-40. https://doi.org/10.1038/ng1760
  30. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007): Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1): 55-70. https://doi.org/10.1016/j.stem.2007.05.014
  31. Mandai M, Ikeda H, Jin ZB, Iseki K, Ishigami C, Takahashi M (2010): Use of lectins to enrich mouse ES-derived retinal progenitor cells for the purpose of transplantation therapy. Cell Transplant 19(1):9- 19. https://doi.org/10.3727/096368909X476599
  32. Martin GR (1981): Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12):7634-8. https://doi.org/10.1073/pnas.78.12.7634
  33. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003): The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631-42. https://doi.org/10.1016/S0092-8674(03)00393-3
  34. Morrison SJ, Shah NM, Anderson DJ (1997): Regulatory mechanisms in stem cell biology. Cell 88 (3):287-98. https://doi.org/10.1016/S0092-8674(00)81867-X
  35. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008): Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101-6. https://doi.org/10.1038/nbt1374
  36. Nienhuis AW, Dunbar CE, Sorrentino BP (2006): Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 13(6):1031-49. https://doi.org/10.1016/j.ymthe.2006.03.001
  37. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313-7. https://doi.org/10.1038/nature05934
  38. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008): Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949-53. https://doi.org/10.1126/science.1164270
  39. Palmqvist L, Glover CH, Hsu L, Lu M, Bossen B, Piret JM, Humphries RK, Helgason CD (2005): Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency. Stem Cells 23 (5):663-80. https://doi.org/10.1634/stemcells.2004-0157
  40. Pease S, Braghetta P, Gearing D, Grail D, Williams RL (1990): Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol 141(2): 344-52. https://doi.org/10.1016/0012-1606(90)90390-5
  41. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008): Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6(10):e253. https://doi.org/10.1371/journal.pbio.0060253
  42. Si-Tayeb K, Noto FK, Sepac A, Sedlic F, Bosnjak ZJ, Lough JW, Duncan SA (2010): Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 10:81. https://doi.org/10.1186/1471-213X-10-81
  43. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004): Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat Biotechnol 22 (5):589-94. https://doi.org/10.1038/nbt957
  44. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001): Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11 (19):1553-8. https://doi.org/10.1016/S0960-9822(01)00459-6
  45. Takahashi K, Yamanaka S (2006): Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (4):663-76. https://doi.org/10.1016/j.cell.2006.07.024
  46. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998): Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369-74. https://doi.org/10.1038/28615
  47. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH (2006): A protein interaction network for pluripotency of embryonic stem cells. Nature 444(7117):364-8. https://doi.org/10.1038/nature05284
  48. Wang ZX, Teh CH, Kueh JL, Lufkin T, Robson P, Stanton LW (2007): Oct4 and Sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells. J Biol Chem 282(17):12822-30. https://doi.org/10.1074/jbc.M611814200
  49. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007): In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151): 318-24. https://doi.org/10.1038/nature05944
  50. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997): Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810-3. https://doi.org/10.1038/385810a0
  51. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001): Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971-4. https://doi.org/10.1038/nbt1001-971
  52. Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T (2005): Nanog expression in mouse germ cell development. Gene Expr Patterns 5 (5):639-46. https://doi.org/10.1016/j.modgep.2005.03.001
  53. Yamanaka S (2009): A fresh look at iPS cells. Cell 137(1):13-7. https://doi.org/10.1016/j.cell.2009.03.034
  54. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz- Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin, II, Thomson JA (2007): Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (5858):1917-20. https://doi.org/10.1126/science.1151526