DOI QR코드

DOI QR Code

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells

  • Choi, Won-Young (Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University) ;
  • Hwang, Ji-Hyun (Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University) ;
  • Cho, Ann-Na (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Andrew J. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jung, Inkyung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Cho, Seung-Woo (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Lark Kyun (Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Young-Joon (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2020.10.21
  • Accepted : 2020.11.16
  • Published : 2020.12.31

Abstract

Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.

Keywords

References

  1. Akiyama, K., Ishikawa, M., and Saito, A. (2008). mRNA expression of activity-regulated cytoskeleton-associated protein (arc) in the amygdala-kindled rats. Brain Res. 1189, 236-246. https://doi.org/10.1016/j.brainres.2007.10.102
  2. Baker, N.E. and Brown, N.L. (2018). All in the family: proneural bHLH genes and neuronal diversity. Development 145, dev159426. https://doi.org/10.1242/dev.159426
  3. Bel-Vialar, S., Medevielle, F., and Pituello, F. (2007). The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev. Biol. 305, 659-673. https://doi.org/10.1016/j.ydbio.2007.02.012
  4. Bertrand, N., Castro, D.S., and Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517-530. https://doi.org/10.1038/nrn874
  5. Brunet, J.F. and Pattyn, A. (2002). Phox2 genes - from patterning to connectivity. Curr. Opin. Genet. Dev. 12, 435-440. https://doi.org/10.1016/S0959-437X(02)00322-2
  6. Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1-21.29.9.
  7. Cedar, H. and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295-304. https://doi.org/10.1038/nrg2540
  8. Chang, C.Y., Ting, H.C., Liu, C.A., Su, H.L., Chiou, T.W., Lin, S.Z., Harn, H.J., and Ho, T.J. (2020). Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25, 2000. https://doi.org/10.3390/molecules25082000
  9. Chen, G., Gulbranson, D.R., Hou, Z., Bolin, J.M., Ruotti, V., Probasco, M.D., Smuga-Otto, K., Howden, S.E., Diol, N.R., Propson, N.E., et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424-429. https://doi.org/10.1038/nmeth.1593
  10. Chen, Y.M., Chen, L.H., Li, M.P., Li, H.F., Higuchi, A., Kumar, S.S., Ling, Q.D., Alarfaj, A.A., Munusamy, M.A., Chang, Y., et al. (2017). Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci. Rep. 7, 45146. https://doi.org/10.1038/srep45146
  11. Cimadamore, F., Fishwick, K., Giusto, E., Gnedeva, K., Cattarossi, G., Miller, A., Pluchino, S., Brill, L.M., Bronner-Fraser, M., and Terskikh, A.V. (2011). Human ESC-derived neural crest model reveals a key role for SOX2 in sensory neurogenesis. Cell Stem Cell 8, 538-551. https://doi.org/10.1016/j.stem.2011.03.011
  12. Cotovio, J.P. and Fernandes, T.G. (2020). Production of human pluripotent stem cell-derived hepatic cell lineages and liver organoids: current status and potential applications. Bioengineering (Basel) 7, 36. https://doi.org/10.3390/bioengineering7020036
  13. Dixon, J.R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J.E., Lee, A.Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., et al. (2015). Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331-336. https://doi.org/10.1038/nature14222
  14. Dubreuil, W., Hirsch, M.R., Jouve, C., Brunet, J.F., and Goridis, C. (2002). The role of Phox2b in synchronizing pan-neuronal and type-specific aspects of neurogenesis. Development 129, 5241-5253. https://doi.org/10.1242/dev.129.22.5241
  15. Episkopou, V. (2005). SOX2 functions in adult neural stem cells. Trends Neurosci. 28, 219-221. https://doi.org/10.1016/j.tins.2005.03.003
  16. Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari, G., et al. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662. https://doi.org/10.1128/MCB.00313-06
  17. Forrest, M.P., Zhang, H., Moy, W., McGowan, H., Leites, C., Dionisio, L.E., Xu, Z., Shi, J., Sanders, A.R., Greenleaf, W.J., et al. (2017). Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21, 305-318.e8. https://doi.org/10.1016/j.stem.2017.07.008
  18. Frank, C.L., Liu, F., Wijayatunge, R., Song, L.Y., Biegler, M.T., Yang, M.G., Vockley, C.M., Safi, A., Gersbach, C.A., Crawford, G.E., et al. (2015). Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat. Neurosci. 18, 647-656. https://doi.org/10.1038/nn.3995
  19. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589. https://doi.org/10.1016/j.molcel.2010.05.004
  20. Higuchi, A., Kao, S.H., Ling, Q.D., Chen, Y.M., Li, H.F., Alarfaj, A.A., Munusamy, M.A., Murugan, K., Chang, S.C., Lee, H.C., et al. (2015). Longterm xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci. Rep. 5, 18136. https://doi.org/10.1038/srep18136
  21. Honkaniemi, J. and Sharp, F.R. (1999). Prolonged expression of zinc finger immediate-early gene mRNAs and decreased protein synthesis following kainic acid induced seizures. Eur. J. Neurosci. 11, 10-17. https://doi.org/10.1046/j.1460-9568.1999.00401.x
  22. Jin, Y., Lee, J.U., Chung, E., Yang, K., Kim, J., Kim, J.W., Lee, J.S., Cho, A.N., Oh, T., Lee, J.H., et al. (2019). Magnetic Control of axon navigation in reprogrammed neurons. Nano Lett. 19, 6517-6523. https://doi.org/10.1021/acs.nanolett.9b02756
  23. Kang, S., Chen, X., Gong, S., Yu, P., Yau, S., Su, Z., Zhou, L., Yu, J., Pan, G., and Shi, L. (2017). Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci. Rep. 7, 12233. https://doi.org/10.1038/s41598-017-12452-x
  24. Klemm, S.L., Shipony, Z., and Greenleaf, W.J. (2019). Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207-220. https://doi.org/10.1038/s41576-018-0089-8
  25. Krumlauf, R. (1994). Hox genes in vertebrate development. Cell 78, 191-201. https://doi.org/10.1016/0092-8674(94)90290-9
  26. Lamar, E., Kintner, C., and Goulding, M. (2001). Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. Development 128, 1335-1346. https://doi.org/10.1242/dev.128.8.1335
  27. Li, D., Liu, J., Yang, X., Zhou, C., Guo, J., Wu, C., Qin, Y., Guo, L., He, J., Yu, S., et al. (2017). Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 21, 819-833.e6. https://doi.org/10.1016/j.stem.2017.10.012
  28. Lupien, M., Eeckhoute, J., Meyer, C.A., Wang, Q., Zhang, Y., Li, W., Carroll, J.S., Liu, X.S., and Brown, M. (2008). FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958-970. https://doi.org/10.1016/j.cell.2008.01.018
  29. Matsuda, T., Irie, T., Katsurabayashi, S., Hayashi, Y., Nagai, T., Hamazaki, N., Adefuin, A.M.D., Miura, F., Ito, T., Kimura, H., et al. (2019). Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 101, 472-485.e7. https://doi.org/10.1016/j.neuron.2018.12.010
  30. McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501. https://doi.org/10.1038/nbt.1630
  31. Mitchell, R.R., Szabo, E., Benoit, Y.D., Case, D.T., Mechael, R., Alamilla, J., Lee, J.H., Fiebig-Comyn, A., Gillespie, D.C., and Bhatia, M. (2014). Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem Cells Dev. 23, 1937-1946. https://doi.org/10.1089/scd.2014.0023
  32. Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature 476, 220-223. https://doi.org/10.1038/nature10202
  33. Pataskar, A., Jung, J., Smialowski, P., Noack, F., Calegari, F., Straub, T., and Tiwari, V.K. (2016). NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J. 35, 24-45. https://doi.org/10.15252/embj.201591206
  34. Philippidou, P. and Dasen, J.S. (2013). Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80, 12-34. https://doi.org/10.1016/j.neuron.2013.09.020
  35. Qian, L., Berry, E.C., Fu, J.D., Ieda, M., and Srivastava, D. (2013). Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat. Protoc. 8, 1204-1215. https://doi.org/10.1038/nprot.2013.067
  36. Qin, Z., Ren, F., Xu, X., Ren, Y., Li, H., Wang, Y., Zhai, Y., and Chang, Z. (2009). ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Mol. Cell. Biol. 29, 3633-3643. https://doi.org/10.1128/MCB.00362-09
  37. Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680. https://doi.org/10.1016/j.cell.2014.11.021
  38. Rhee, J.W., Arata, A., Selleri, L., Jacobs, Y., Arata, S., Onimaru, H., and Cleary, M.L. (2004). Pbx3 deficiency results in central hypoventilation. Am. J. Pathol. 165, 1343-1350. https://doi.org/10.1016/S0002-9440(10)63392-5
  39. Ross, S.E., Greenberg, M.E., and Stiles, C.D. (2003). Basic helix-loop-helix factors in cortical development. Neuron 39, 13-25. https://doi.org/10.1016/S0896-6273(03)00365-9
  40. Rowe, R.G. and Daley, G.Q. (2019). Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 20, 377-388. https://doi.org/10.1038/s41576-019-0100-z
  41. Rue, P. and Martinez Arias, A. (2015). Cell dynamics and gene expression control in tissue homeostasis and development. Mol. Syst. Biol. 11, 792. https://doi.org/10.15252/msb.20145549
  42. Schaffner, W. (2015). Enhancers, enhancers - from their discovery to today's universe of transcription enhancers. Biol. Chem. 396, 311-327. https://doi.org/10.1515/hsz-2014-0303
  43. Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., et al. (2016). A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042-2059. https://doi.org/10.1016/j.celrep.2016.10.061
  44. Schwartzentruber, J., Foskolou, S., Kilpinen, H., Rodrigues, J., Alasoo, K., Knights, A.J., Patel, M., Goncalves, A., Ferreira, R., Benn, C.L., et al. (2018). Molecular and functional variation in iPSC-derived sensory neurons. Nat. Genet. 50, 54-61. https://doi.org/10.1038/s41588-017-0005-8
  45. Scott-Browne, J.P., Lopez-Moyado, I.F., Trifari, S., Wong, V., Chavez, L., Rao, A., and Pereira, R.M. (2016). Dynamic changes in chromatin accessibility occur in CD8(+) T cells responding to viral infection. Immunity 45, 1327-1340. https://doi.org/10.1016/j.immuni.2016.10.028
  46. Seo, H.I., Cho, A.N., Jang, J., Kim, D.W., Cho, S.W., and Chung, B.G. (2015). Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomedicine 11, 1861-1869. https://doi.org/10.1016/j.nano.2015.05.008
  47. Shimizu, T., Nakazawa, M., Kani, S., Bae, Y.K., Shimizu, T., Kageyama, R., and Hibi, M. (2010). Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 137, 1875-1885. https://doi.org/10.1242/dev.047167
  48. Shin, J., Choi, E.J., Cho, J.H., Cho, A.N., Jin, Y., Yang, K., Song, C., and Cho, S.W. (2017). Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules 18, 3060-3072. https://doi.org/10.1021/acs.biomac.7b00568
  49. Shum, C., Macedo, S.C., Warre-Cornish, K., Cocks, G., Price, J., and Srivastava, D.P. (2015). Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm. Behav. 74, 228-242. https://doi.org/10.1016/j.yhbeh.2015.06.014
  50. Soufi, A., Donahue, G., and Zaret, K.S. (2012). Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994-1004. https://doi.org/10.1016/j.cell.2012.09.045
  51. Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  52. Terzic, J. and Saraga-Babic, M. (1999). Expression pattern of PAX3 and PAX6 genes during human embryogenesis. Int. J. Dev. Biol. 43, 501-508.
  53. Wapinski, O.L., Vierbuchen, T., Qu, K., Lee, Q.Y., Chanda, S., Fuentes, D.R., Giresi, P.G., Ng, Y.H., Marro, S., Neff, N.F., et al. (2013). Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621-635. https://doi.org/10.1016/j.cell.2013.09.028
  54. Wu, F., Sapkota, D., Li, R., and Mu, X. (2012). Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J. Comp. Neurol. 520, 952-969. https://doi.org/10.1002/cne.22741
  55. Wu, Y.Y., Chiu, F.L., Yeh, C.S., and Kuo, H.C. (2019). Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol. 9, 180177. https://doi.org/10.1098/rsob.180177
  56. Yang, D., Jang, I., Choi, J., Kim, M.S., Lee, A.J., Kim, H., Eom, J., Kim, D., Jung, I., and Lee, B. (2018). 3DIV: a 3D-genome Interaction Viewer and database. Nucleic Acids Res. 46, D52-D57. https://doi.org/10.1093/nar/gkx1017
  57. Yu, G., Wang, L.G., and He, Q.Y. (2015). ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382-2383. https://doi.org/10.1093/bioinformatics/btv145
  58. Zhang, S.W., Zhang, H.W., Zhou, Y.F., Qiao, M., Zhao, S.M., Kozlova, A., Shi, J.X., Sanders, A.R., Wang, G., Luo, K.X., et al. (2020). Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science 369, 561-565. https://doi.org/10.1126/science.aay3983
  59. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. https://doi.org/10.1186/gb-2008-9-9-r137
  60. Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy, J., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785-798. https://doi.org/10.1016/j.neuron.2013.05.029

Cited by

  1. CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells vol.44, pp.11, 2020, https://doi.org/10.14348/molcells.2021.0224