DOI QR코드

DOI QR Code

Moieties of Complement iC3b Recognized by the I-domain of Integrin αXβ2

  • Received : 2020.08.06
  • Accepted : 2020.11.17
  • Published : 2020.12.31

Abstract

Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α'-chain (α'NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α'NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.

Keywords

References

  1. Arnaout, M.A., Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381-410. https://doi.org/10.1146/annurev.cellbio.21.090704.151217
  2. Bajic, G., Yatime, L., Sim, R.B., Vorup-Jensen, T., and Andersen, G.R. (2013). Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc. Natl. Acad. Sci. U. S. A. 110, 16426-16431. https://doi.org/10.1073/pnas.1311261110
  3. Becherer, J.D., Alsenz, J., Esparza, I., Hack, C.E., and Lambris, J.D. (1992). Segment spanning residues 727-768 of the complement C3 sequence contains a neoantigenic site and accommodates the binding of CR1, factor H, and factor B. Biochemistry 31, 1787-1794. https://doi.org/10.1021/bi00121a029
  4. Carroll, M.C. (2004). The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981-986. https://doi.org/10.1038/ni1113
  5. Choi, J., Choi, J., and Nham, S.U. (2010). Characterization of the residues of αX I-domain and ICAM-1 mediating their interactions. Mol. Cells 30, 227-234. https://doi.org/10.1007/s10059-010-0111-2
  6. Diamond, M.S., Garcia-Aguilar, J., Bickford, J.K., Corbi, A.L., and Springer, T.A. (1993). The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031-1043. https://doi.org/10.1083/jcb.120.4.1031
  7. Gaither, T.A., Vargas, I., Inada, S., and Frank, M.M. (1987). The complement fragment C3d facilitates phagocytosis by monocytes. Immunology 62, 405-411.
  8. Gang, J., Choi, J., Lee, J.H., and Nham, S.U. (2007). Identification of critical residues for plasminogen binding by the αX I-domain of the β2 integrin, αXβ2. Mol. Cells 24, 240-246.
  9. Gros, P., Milder, F.J., and Janssen, B.J. (2008). Complement driven by conformational changes. Nat. Rev. Immunol. 8, 48-58. https://doi.org/10.1038/nri2231
  10. Helmy, K.Y., Katschke, K.J., Gorgani, N.N., Kljavin, N.M., Elliott, J.M., Diehl, L., Scales, S.J., Ghilardi, N., and van Lookeren Campagne, M. (2006). CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915-927. https://doi.org/10.1016/j.cell.2005.12.039
  11. Inada, S., Brown, E.J., Gaither, T.A., Hammer, C.H., Takahashi, T., and Frank, M.M. (1983). C3d receptors are expressed on human monocytes after in vitro cultivation. Proc. Natl. Acad. Sci. U. S. A. 80, 2351-2355. https://doi.org/10.1073/pnas.80.8.2351
  12. Janssen, B.J. and Gros, P. (2007). Structural insights into the central complement component C3. Mol. Immunol. 44, 3-10. https://doi.org/10.1016/j.molimm.2006.06.017
  13. Janssen, B.J., Huizinga, E.G., Raaijmakers, H.C., Roos, A., Daha, M.R., Nilsson-Ekdahl, K., Nilsson, B., and Gros, P. (2005). Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511. https://doi.org/10.1038/nature04005
  14. Lee, J.H., Choi, J., and Nham, S.U. (2007). Critical residues of αX I-domain recognizing fibrinogen central domain. Biochem. Biophys. Res. Commun. 355, 1058-1063. https://doi.org/10.1016/j.bbrc.2007.02.082
  15. Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R. (1995). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638. https://doi.org/10.1016/0092-8674(95)90517-0
  16. Luo, B.H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619-647. https://doi.org/10.1146/annurev.immunol.25.022106.141618
  17. Michishita, M., Videm, V., and Arnaout, M.A. (1993). A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72, 857-867. https://doi.org/10.1016/0092-8674(93)90575-b
  18. Myones, B.L., Dalzell, J.G., Hogg, N., and Ross, G.D. (1988). Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3. J. Clin. Invest. 82, 640-651. https://doi.org/10.1172/JCI113643
  19. Papanastasiou, P., Koutsogiannaki, S., Sarigiannis, Y., Geisbrecht, B.V., Ricklin, D., and Lambris, J.D. (2017). Structural implications for the formation and function of the complement effector protein iC3b. J. Immunol. 198, 3326-3335. https://doi.org/10.4049/jimmunol.1601864
  20. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  21. Plow, E.F., Haas, T.A., Zhang, L., Loftus, J., and Smith, J.W. (2000). Ligand binding to integrins. J. Biol. Chem. 275, 21785-21788. https://doi.org/10.1074/jbc.R000003200
  22. Ricklin, D., Hajishengallis, G., Yang, K., and Lambris, J.D. (2010). Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785-797. https://doi.org/10.1038/ni.1923
  23. Ross, G.D. and Medof, M.E. (1985). Membrane complement receptors specific for bound fragments of C3. Adv. Immunol. 37, 217-267. https://doi.org/10.1016/S0065-2776(08)60341-7
  24. Taniguchi-Sidle, A. and Isenman, D.E. (1992). Mutagenesis of the ArgGly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J. Biol. Chem. 267, 635-643. https://doi.org/10.1016/S0021-9258(18)48541-9
  25. Taniguchi-Sidle, A. and Isenman, D.E. (1994). Interactions of human complement component C3 with factor B and with complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) involve an acidic sequence at the N-terminus of C3 α'-chain. J. Immunol. 153, 5285-5302.
  26. Ueda, T., Rieu, P., Brayer, J., and Arnaout, M.A. (1994). Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. U. S. A. 91, 10680-10684. https://doi.org/10.1073/pnas.91.22.10680
  27. Ustinov, V.A. and Plow, E.F. (2005). Identity of the amino acid residues involved in C3bi binding to the I-domain supports a mosaic model to explain the broad ligand repertoire of integrin αMβ2. Biochemistry 44, 4357-4364. https://doi.org/10.1021/bi047807e
  28. Vorup-Jensen, T., Carman, C.V., Shimaoka, M., Schuck, P., Svitel, J., and Springer, T.A. (2005). Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin αXβ2. Proc. Natl. Acad. Sci. U. S. A. 102, 1614-1619. https://doi.org/10.1073/pnas.0409057102
  29. Vorup-Jensen, T. and Jensen, R.K. (2018). Structural immunology of complement receptors 3 and 4. Front. Immunol. 9, 1-20. https://doi.org/10.3389/fimmu.2018.00001
  30. Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T.A. (2003). Structure and allosteric regulation of the αXβ2 integrin I domain. Proc. Natl. Acad. Sci. U. S. A. 100, 1873-1878. https://doi.org/10.1073/pnas.0237387100
  31. Xu, S., Wang, J., Wang, J.H., and Springer, T.A. (2017). Distinct recognition of complement iC3b by integrins αXβ2 and αMβ2. Proc. Natl. Acad. Sci. U. S. A. 114, 3403-3408. https://doi.org/10.1073/pnas.1620881114