• Title/Summary/Keyword: plates vibration

Search Result 871, Processing Time 0.024 seconds

Frequencies and Mode Shapes of Annular Plates tilth Variable Thickness by the Ritz Method in Three-Dimensional Analysis (변두께를 갖는 두꺼운 환형판의 삼차원적 리츠방법에 의한 진동수와 모드형상)

  • 양근혁;강재훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.89-100
    • /
    • 2001
  • The Ritz method Is applied In a three-dimensional (3-D) analysis to obtain accurate frequencies for thick. linearly tapered. annular plates. The method is formulated for annular plates haying any combination of free or fixed boundaries at both Inner and outer edges. Admissible functions for the three displacement components are chosen as trigonometric functions in the circumferential co-ordinate. and a1gebraic polynomials in the radial and thickness co-ordinates. Upper bound convergence of the non-dimensional frequencies to the exact values within at least four significant figures is demonstrated. Comparisons of results for annular plates with linearly varying thickness are made with ones obtained by others using 2-D classical thin place theory. Extensive and accurate ( four significant figures ) frequencies are presented 7or completely free. thick, linearly tapered annular plates haying ratios of average place thickness to difference between outer radius (a) and inner radius (b) radios (h$_{m}$/L) of 0.1 and 0.2 for b/L=0.2 and 0.5. All 3-D modes are included in the analyses : e.g., flexural, thickness-shear. In-plane stretching, and torsional. Because frequency data liven is exact 7o a\ulcorner least four digits. It is benchmark data against which the results from other methods (e.g.. 2-D 7hick plate theory, finite element methods. finite difference methods) and may be compared. Throughout this work, Poisson\`s ratio $\upsilon$ is fixed at 0.3 for numerical calculations.s.

  • PDF

Free vibration of cross-ply laminated plates based on higher-order shear deformation theory

  • Javed, Saira;Viswanathan, K.K.;Izyan, M.D. Nurul;Aziz, Z.A.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.473-484
    • /
    • 2018
  • Free vibration of cross-ply laminated plates using a higher-order shear deformation theory is studied. The arbitrary number of layers is oriented in symmetric and anti-symmetric manners. The plate kinematics are based on higher-order shear deformation theory (HSDT) and the vibrational behaviour of multi-layered plates are analysed under simply supported boundary conditions. The differential equations are obtained in terms of displacement and rotational functions by substituting the stress-strain relations and strain-displacement relations in the governing equations and separable method is adopted for these functions to get a set of ordinary differential equations in term of single variable, which are coupled. These displacement and rotational functions are approximated using cubic and quantic splines which results in to the system of algebraic equations with unknown spline coefficients. Incurring the boundary conditions with the algebraic equations, a generalized eigen value problem is obtained. This eigen value problem is solved numerically to find the eigen frequency parameter and associated eigenvectors which are the spline coefficients.The material properties of Kevlar-49/epoxy, Graphite/Epoxy and E-glass epoxy are used to show the parametric effects of the plates aspect ratio, side-to-thickness ratio, stacking sequence, number of lamina and ply orientations on the frequency parameter of the plate. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Free Vibration Analysis of Orthotropic Triangular Plates with Simplified Series Function (단순급수함수를 이용한 직교이방성 복합재료 삼각판의 자유진동해석)

  • 이영신;정대근;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.849-863
    • /
    • 1992
  • A very simple and computationally efficient numerical method is developed for the free vibration of isotropic and orthotropic composite triangular plates. A set of two-dimensional simple series functions is used as an admissible displacement functions in the Rayleigh-Ritz method to obtain the natural frequencies, nodal patterns and mode shapes for the plates. From the prescribed starting function satisfying only the geometric boundary conditions, the higher terms in the series functions are constructed with adding order of polynominal. Natural frequencies, nodal patterns and mode shapes are obtained for right triangular plates with three different support conditions. The obtained numerical results are presented, and the isotropic and some orthotropic cases are verified with other numerical methods in the liternature.

A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations

  • Meksi, Abdeljalil;Benyoucef, Samir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this work, a novel simple first-order shear deformation plate theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded plates and supported by either Winkler or Pasternak elastic foundations. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of present theory are compared with results of the traditional first-order and the other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of functionally graded plates.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Benchmark Modal Stress-Resultant Distributions for Vibrating Rectangular Plates with Two Opposite Edges Free

  • Y. Xiang;Wang, C.M.;T. Utsunomiya;C. Machimdamrong
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • This paper presents exact solutions for the modal stress-resultant distributions for vibrating rectangular Mindlin plates involving two opposite sides simply supported while the other two sides free. These exact stress-resultants of vibrating plates with free edges, hitherto unavailable, are very important because they serve as benchmark solutions for checking numerical solutions and methods. Using the exact solutions of a square plate, this paper highlights the problem of determining accurate stress-resultants, especially the transverse shear forces and twisting moments in thin plates, when employing the widely used numerical methods such as the Ritz method and the finite element method. Thus, this study shows that there is a need for researchers to develop refinements to the Ritz method and the finite element method for determining very accurate stress-resultants in vibrating plates with free edges.

  • PDF

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.