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ABSTRACT

This paper presents exact solutions for the modal stress-resultant distributions for vibrating rectangular Mindlin plates involving
two opposite sides simply supported while the other two sides free. These exact stress-resultants of vibrating plates with free edges,
hitherto unavailable, are very important because they serve as benchmark solutions for checking numerical solutions and methods.
Using the exact solutions of a square plate, this paper highlights the problem of determining accurate stress-resultants, especially
the transverse shear forces and twisting moments in thin plates, when employing the widely used numerical methods such as
the Ritz method and the finite element method. Thus, this study shows that there is a need for researchers to develop refinements
to the Ritz method and the finite element method for determining very accurate stress-resultants in vibrating plates with free edges.
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1. Introduction

In the dynamic analysis of a very large floating structure
(VLES), it is crucial that the stress-resultants are accu-
rately determined for design purposes. A box-like VLFS
can be modelled as a rectangular plate vibrating freely in
air (Utsunomiya e? al., 1998). While carrying a free vibra-
tion analysis of rectangular VLFS, the authors have found
that the classical thin plate theory cannot furnish correct
modal stress-resultant distributions, especially the trans-
verse shear forces and the twisting moments along the free
edges of the plate. Even the more refined Mindlin plate
theory used in conjunction with the Ritz method or the
finite element method encounters convergence problems
for calculating the stress-resultants, especially when the
plate is thin. One of the reasons for the Ritz method and
the finite element method being not able to predict the
stress-resultants accurately is that the natural boundary
conditions are not imposed along the free edges of the
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plate in the numerical solution procedure. Thus, as a first
step in developing a better numerical solution approach,
one has to obtain closed-form solutions so that numerical
solutions computed from newly developed numerical
methods may be assessed for their validity, convergence
and accuracy.

In the open literature, the authors could not find exact
modal stress-resultant distributions for vibrating plates
with free edges to compare with the numerical results.
There are papers and books published on vibrating plates
with free edges, but these publications only presented the
vibration frequencies and mode shapes (see for example,
Gorman, 1982; Gorman and Ding, 1996; Chen et al.,
1999). This prompted the authors to derive closed-form
solutions for a rectangular Mindlin plate with two opposite
edges simply supported while the other edges free (here-
after will be referred to as FSFS plate). Such a rectangular
plate allows one to employ the Levy-type solution
approach in determining the desired closed-form solu-
tions. The closed-form solutions should serve as impor-
tant benchmark solutions for researchers and engineers
who are developing numerical methods for obtaining
accurate stress-resultants in vibrating plates involving free
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edges.

Presented herein is the approach used to obtain the
closed form results of freely vibrating FSFS Mindlin
plates. Sample vibration frequencies, modal deflections
and modal stress-resultants are tabulated and plotted for
the first three modes of vibration of square plates with two
thickness ratios. One thickness ratio represents a thin plate
while the other represents a thick plate. Vibration results
are also obtained from the Ritz method and the finite ele-
ment method. When these latter results are compared with
the closed-form solutions, one can clearly observe the
inability of these widely-used numerical methods in fur-
nishing accurate transverse shear forces and twisting
moments when the plates are thin. It now remains for
researchers to develop better numerical methods to capture
the modal stress-resultants accurately for vibrating plates
with free edges.

2. Mathematical Modelling

2.1 Governing Differential Equations

Consider a rectangular Mindlin plate of length a, width b
and thickness 4 as shown in Fig. 1. The origin of the coor-
dinates (x, y) is positioned as shown in Fig. 1. The gov-
erning differential equations for the plate in harmonic
vibration are given by (Mindlin, 1951)

Kth[%(g—:+ ex)+ gy(‘?—;; + 9),)} + pha)zw =0 (hH
298 99\, 1-v)D (3_9 89)
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Fig. 1. Geometry and coordinate system of a rectangular plate
with two edges simply supported and the other two edges free.
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where E is Young’s modulus, G = E/[2(1+V)] the shear
modulus, v the Poisson’s ratio, k2 the shear correction fac-
tor, G = ER*/[12(1+v%)] the flexural rigidity of the plate,
p the mass density of the plate, @ the circular frequency of
the plate, w the transverse displacement, 6, and 6, and are
rotations in the y and x directions, respectively.

In producing the closed-form solutions for the stress-
resultant distributions of vibrating rectangular plates with
free edges, we consider the case of the plate having two
opposite edges simply supported (i.e. edges y=0 and
y = b), while the other two edges free (i.e. edges x = + a/2).
The boundary conditions for the two simply supported,
parallel edges (y=0 and y=»5) are

w=M,=6,=0 “)
and the boundary conditions for the two free edges
(x=—a/2 and x=a/2) are
=0,=0 &)

in which the stress-resultants M,, M,, M, and Q, are
bending moments along the y and x axes, twisting moment
and shear force, respectively. According to the Mindlin
plate theory, these stress-resultants are related to the dis-
placements as follows:

Mx = Myx

M, = D(ao.,i %i) ©)
= @i 33) "
0,=xKG (9 +%’;V) 9
0,= xzch(ey+%) (10)

2.2 Closed-form Solution Procedure

The Levy-type solution approach is employed to solve
the governing differential equations for plates with the pre-
scribed boundary conditions (Khdeir, 1988; Chen and Liu,
1990; Xiang et al., 1996). The trigonometric functions are
used in the displacement fields, along the y direction, to
satisfy the boundary conditions at the two simply sup-
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ported edges (y =0 and y = b). The displacement fields of
the plate can be expressed as

¢, (x) sinM2Y
w (x,y) b
0,(x,y) t = ¢x(x)sinm—;r~y (11
0,(x,y)
’ <z)y(x)cos’l;1:-y

in which ¢,,(x), ¢.(x) and ¢ (x) are unknown functions
along the x direction and are to be determined, and m is the
number of half waves of the displacements in the y direction.

By substituting Eq. (11) into Egs. (1) to (3), the fol-
lowing linear ordinary differential equation system can be
derived:

0’(x) = Ho(x)

where ¢(x) = [¢W¢;V¢x ¢;¢y ¢;]T and the prime (') denotes
the derivative with respect to x, and H is a 6 X 6 matrix with
the following non-zero elements:

(12)

Hp=Hy=Hg=1 (13a)
2 2 2

Hy = (mn/b) (—r; Gh)+phw (13b)
—k*Gh

H,, = -1, Hys = (mn/b) (13c, d)

2
H42=K‘DGh, H46=%(_1+_V) (13, )
/b)K°Gh /b)(1 .

Hor= ([rzr;(l —)v)/2]’ Hoy= -5 1 z(v o (130, D
2 2 3 2

H,, = ROn/bY + K Ghph’ @'/12 (13)

[D(1-v)/2]
A general solution of Eq. (12) can be obtained as
o(x) = e™e (14)

where c is a constant column vector that can be determined
by the plate boundary conditions of the two free edges and

e is the general matrix solution of Eq. (12), given by

e = 2(x)Z27(0) (15)

in which Z(x) is the fundamental matrix solution of Eq.
(12) and Z* (0) is the inverse of Z(x) with x=0. The
matrix Z(x) is formed from the eigenvalues and eigenvec-
tors of matrix H. The procedure in obtaining Z(x) has been
detailed by Xiang et al. (1996).

In view of Eq. (14) and applying the boundary conditions
on the two free edges (x =+ a/2 ), a homogeneous system
of equations is obtained:

Ke =0 (16)
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The vibration frequency o and the corresponding eigen-
vector ¢ are determined when the determinant of K is set to
zero. As the vibration frequency @ is imbedded in matrix
H, it cannot be obtained directly from Eq. (16). A numer-
ical iteration procedure has been developed to carry out the
calculations (Xiang et al., 1996).

2.3 Calculation of Stress-Resultants

After the frequency @ and the corresponding eigen-
vector ¢ are obtained from Eq. (16), the solution of ¢(x),
which contains the displacement fields in the x direction
and their first derivatives, is determined from Eq. (14). In
view of Eqgs. (6) to (10), the stress-resultants M, MM,
Q,, and Qy can be expressed as

M, = D(q);- vr—%E%)sinm—;X (17
M, = D(— o+ v@)sin% (18)
M,, = Qﬁ%(’ll’)%ﬁ ¢;)cosm—:-y (19)
0, = K'Gh(9,+9,)sin™ > (20)
Q,= szh(¢y—’—’ll)—”¢w)cosmg—y 20

3. Results and Discussions

In this section the vibration modes and distributions of
the closed-form modal stress-resultants are presented for
first three modes of vibration of FSFS square plates. The
thickness ratios, /b, are taken to be 0.01 to represent the
case of thin plates and 0.1 to represent the case of thick
plates. The Poisson ratio v=0.3 and the shear correction
factor % =5/6 are adopted in the computations. The
modal stress-resultants based on Kirchhoff (thin) and
Mindlin (thick) plate theories are determined from using
both the Ritz method and the finite element method
(FEM). The results are presented for some selected cases.

The maximum transverse displacement of the plate in
vibration is first normalised by setting

|wma/b| =1

The corresponding modal stress-resultants in the plate are
presented in their non-dimensional forms as follows:

(22)

M. = ng (23)
M, =2u, (24)
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Table 1. Vibration frequency parameters A = ( a)bz/ﬂz)A/ph/D
for FSFS square plate obtained from different solution methods.

Method hib Mode
1 2 3

Closed-Form Solution 0.01 | 0.9754 | 1.6309 | 3.7092
Ritz Thin Plate Solution — 1 0.9759 1 1.6348 ) 3.7211
Ritz Thick Plate Solution 0.01 [ 0.9755 | 1.6324 | 3.7139
FEM Thin Plate Solution — | 0.9759 | 1.6346 | 3.7204
FEM Mindlin Plate Solution | 0.01 | 0.9754 | 1.6310 | 3.7099
Closed-Form Solution 0.1 | 0.9565 |1.5592|3.4307
Ritz Mindlin Plate Solution | 0.1 | 0.9565 |1.5593 | 3.4307
FEM Mindlin Plate Solution | 0.1 | 0.9603 | 1.5725 | 3.5032

M, =Lm, (25)

D

— b2

O: = BQ" (26)

- b2

0,=350, @7

3.1 Vibration Frequencies

Table 1 presents the vibration frequency parameters
A = (wb*/7°)Jph/D for the FSFS square plate using dif-
ferent solution methods. Note that the closed-form solu-
tions are obtained on the basis of the Mindlin plate theory
and the proposed analytical method described above. The
automated p-Ritz method (Liew et al., 1998) based on
both the Kirchhoff (thin) and the Mindlin (thick) plate the-
ories are used to generate the Ritz solutions. The degree of
polynomial terms used to approximate the displacements
in the Ritz methods is 14. The NASTRAN finite element
package is also used to solve the vibration problem. These
FEM solutions are obtained using two shell elements, one
that is based on the Kirchhoff (thin) plate theory while the
other on the Mindlin (thick) plate theory. The mesh dis-
cretization is taken as 100x100 uniform mesh with 8
noded quadrilateral element (QUADS).

Table 1 shows that the frequency parameters obtained
using the Ritz method (based on the Mindlin plate theory)
are almost identical to results from the closed-form solu-
tion for a thick plate (/b = 0.1). The FEM Mindlin plate
results for a thick plate (/b =0.1) are not as accurate
when compared to the Ritz Mindlin plate results. For the
plate with 4/b = 0.01, the Ritz and FEM results based on
the Mindlin plate theory are closer to the closed-form solu-
tions than the ones based on the Kirchhoff plate theory.
This is because the thickness ratio #/b = 0.01 is not thin
enough for the Mindlin plate solutions to approach the
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Fig. 2. Closed-form solution of normalised deflections versus the
coordinate x/a for thin FSFS square plate (/b = 0.01) vibrating in
the first three modes. The deflections are taken at y/b = 0.5.
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Fig. 3. Closed-form solution of normalised deflections versus the
coordinate x/a for thick FSFS square plate (4/b = 0.1) vibrating in
the first three modes. The deflections are taken at y/b = 0.5.

Kirchhoff plate solutions.

3.2 Mode Shapes

Figs. 2 and 3 present the vibration mode shapes for the
thin and thick, square FSFS plates along the x axis with
y=b/2. The plates are vibrating in their first three modes.
The corresponding mode shapes for the thin and thick
plates are very close to each other. It is found that for all
three modes, the value of m (see Eq. (11)) is equal to unity.
It means that there is only one half-wave for the mode
shapes along the y direction. These figures also show that
the mode shapes for the first and third modes are sym-
metric while the mode shape for the second mode is anti-
symmetric. There are no nodal lines for the first mode, one
nodal line for the second mode and two nodal lines for the
third mode in the y direction, respectively.

3.3. Closed-Form Solutions of Modal Stress-Resultants
Figs. 4 to 8 present the closed-form solutions of modal

stress-resultants, namely, shear forces O« and Qy, bending

moments M, and M, and twisting moment My, , for thin
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Fig. 4. Closed-form solution of modal shear force Qx versus the
coordinate x/a for thin FSFS square plate (A/b = 0.01) vibrating in
the first three modes. The shear force (J, is taken at y/b = 0.5.
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Fig. 5. Closed-form solution of modal shear force éy versus the
coordinate x/a for thin FSFS square plate (4/b = 0.01) vibrating in
the first three modes. The shear force (, is taken at y/b = 0.
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Fig. 6. Closed-form solution of modal bending moment M, ver-
sus the coordinate x/a for thin FSFS square plate (h/b=0.01)
vibrating in the first three modes. The bending moment M, is

taken at y/b = 0.5.

(h/b=0.01) FSFS square plates vibrating in their first
three modes. Figs. 9 to 13 show the stress-resultants for
thick (h/b=0.1) FSES square plates.

The closed-form solutions show that the stress-resultants
Q. M, , and My for all modes are equal to zero along the
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Fig. 7. Closed-form solution of modal bending moment M, ver-
sus the coordinate x/a for thin FSFS square plate (h/b=0.01)
vibrating in the first three modes. The bending moment M, is
taken at y/b = 0.5.
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Fig. 8. Closed-form solution of modal twisting moment A_/Iy ver-
sus the coordinate x/a for thin FSFS square plate (h/b=0.01)
vibrating in the first three modes. The twisting moment M, is
taken at y/b = 0.
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Fig. 9. Closed-form solution of modal shear force Qx versus the
coordinate x/a for thick FSFS square plate (h/b = 0.1) vibrating in
the first three modes. The shear force O, is taken at y/b = 0.5.

two free edges (x =— a/2 and x = a/2) (see Figs. 4, 6, 8, 9,
11 and 13). It is required by the natural boundary con-
ditions of the plate along the free edges as defined by Eq.
(5). For stress-resultants Oy, 0, and M.y , there are sharp
increases in the vicinity of the free edges, especially when
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Fig. 10. Closed-form solution of modal shear force @y versus the
coordinate x/a for thick FSFS square plate (h/b = 0.1) vibrating in
the first three modes. The shear force Q) is taken at y/b = 0.
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Fig. 11. Closed-form solution of modal bending moment M; ver-
sus the coordinate x/a for thick FSFS square plate (h/b=0.1)
vibrating in the first three modes. The bending moment M is

taken at y/b = 0.5.
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Fig. 12. Closed-form solution of modal bending moment M, ver-
sus the coordinate x/a for thick FSFS square plate (A/b=0.1)
vibrating in the first three modes. The bending moment M,y is
taken at y/b = 0.5.

the plate is thin (A/b=0.01).

All stress-resultants for thin plates are slightly
greater than the corresponding stress-resultants for
thick plates.
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Fig. 13. Closed-form solution of modal twisting moment M.y
versus the coordinate x/a for thick FSFS square plate (/b =0.1)
vibrating in the first three modes. The twisting moment Mxy is
taken at y/b =0.
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Fig. 14. Closed-form, Ritz and FEM (Nastran) solutions of modal
shear force Qx versus the coordinate x/a for thin FSFS square
plate (h/b = 0.01) vibrating in the first mode. The shear force Q.
is taken at y/b = 0.5.
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3.4 Modal Stress-Resultants Prediction by Ritz and FEM
Methods )

One of the aims of this study is to check the validity and
accuracy of the Ritz method and FEM in predicting the
modal stress-resultants of plates in the vicinity of free
edges. This motivation is prompted by the fact that both
the Ritz method and FEM do not impose the natural
boundary conditions, namely Q, =0, M, =0 and M,, =0,
along the free edges. This may cause erroneous predic-
tions for the stress-resultants in the plate.

The stress-resultants M, and A7Iy generated by the Ritz
and the FEM methods are in close agreement with the
closed-form solutions and are therefore not presented
herein. The stress-resultants O, Qy, and M, from the
Ritz and FEM methods do not agree well with the closed-
form solutions near the free edges of the plates due to the
sharp variations of these stress-resultants at the vicinity of
the free edges.

Fig. 14 presents the shear force 0., obtained from the
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closed-form analytical expression and also from the Ritz
method and FEM, for a thin (#/b = 0.01) FSFS square
plate. It can be seen that all numerical solutions, except for
the ones from the Ritz method using the Mindlin plate the-
ory, are in close agreement with the closed-form solutions
for x/a = — 0.45 to 0.45. The results from the Ritz method
show oscillations about the closed-form solutions with
varying x/a values. In the vicinity of the free edges
(x = —a/2 and x = a/2), the two Mindlin plate solutions
give better prediction than the ones from the two thin plate
solutions. The thin plate solutions do not show any trend
to approach a zero value at the free edges. The effective
shear forces, obtained from the Ritz method using the
thin plate theory, however do vanish at the two free
edges as shown in Fig. 14. _

The relationship of the shear force Q. versus the coor-
dinate x/a for a thick (4/b = 0.1) FSFS square plate is
depicted in Fig. 15. The results from the two Mindlin plate
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Fig. 15. Closed-form, Ritz and FEM (Nastran) solutions of modal
shear force Q versus the coordinate x/a for thick FSFS square
plate (h/b = 0.1) vibrating in the first mode. The shear force Qs is
taken at y/b = 0.5.
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Fig. 16. Closed-form, Ritz and FEM (Nastran) solutions of modal

twisting moment My, versus the coordinate x/a for thin FSFS

square plate (#/b = 0.01) vibrating in the first mode. The twisting

moment My istakenat y/b =0
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solutions are in very close agreement with the ones from
the closed-form solution. The two solution methods for the
Mindlin plates can be used to predict accurately the trans-
verse shear forces in thick plates. The two solution meth-
ods for the Kirchhoff plates are, however, not suitable in
analysing thick plates as shown in Fig. 15. .

Fig. 16 shows the variations of the twisting moment M,,
versus the coordinate x/a for a thin (A/b=0.01) FSFS
square plate. All results from the Ritz and FEM solutions
are in good agreement with the closed-form solution
except near the free edges. In this case, the Mindlin plate
solution obtained using NASTRAN gives the best results
near the free edges. .

The variations of the twisting moment M., versus the
coordinate x/a for a thick (#/b = 0.1) FSFS square plate
are presented in Fig. 17. The results from the Ritz
method and FEM, based on the Mindlin plate theory, are
in excellent agreement with the ones from the closed-
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Fig. 17. Closed-form, Ritz and FEM (Nastran) solutions of modal
twisting moment My versus the coordinate x/a for thick FSFS
square plate (#/b = 0.1) vibrating in the first mode. The twisting
moment M,y is taken at y/b=0.
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Fig. 18. Closed-form, Ritz and FEM solutions of modal shear
force Q, versus the coordinate x/a for thin FSFS square plate
(h/b = 0.01) vibrating in the second mode. The shear force —Q—x is
taken at y/b = 0.5.



56 Benchmark Modal Stress-Resultant Distributions

form solutions. _ .

Figs. 18 to 24 present the stress-resultants Qx and M.y
for the thin (&/» = 0.01) and thick (/b = 0.1) FSFES square
plates vibrating in the second and third modes. It is
observed that the Ritz and FEM thin plate solutions fail to
predict O« and M,, for thin plates near the free edges (see
Figs. 18, 20, 22 and 24) and for thick plates in the entire
range of x/a=-0.5 to 0.5 (see Figs. 19, 21, 23 and 25).
The Ritz method and FEM, based on the Mindlin plate
theory, also have problems in furnishing accurate results
for thin plates near the free edges. However, these two
methods give excellent predictions for Q. and M.y in
thick plates.

Note: In Figs. 2 to 25, the curves were plotted using 201
equi-spaced sampling points along the horizontal axis for
all closed-form solutions, 101 sampling points for the
FEM solutions and 41 points for the Ritz solutions. The
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Fig. 19. Closed-form, Ritz and FEM solutions of modal shear
force Qx versus the coordinate x/a for thick FSFS square plate
(h/b = 0.1) vibrating in the second mode. The shear force @x is
taken at y/b =0.5.
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Fig. 20. Closed-form, Ritz and FEM solutions of modal twisting
moment M,y versus the coordinate x/a for thin FSFS square plate
(h/b=0.01) vibrating in the second mode. The twisting moment

M,, is taken at y/b=0.

symbols, on the curves, do not indicate the data points for
plotting the curves but they are simply used in identifying
the curves.
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Fig. 21. Closed-form, Ritz and FEM solutions of modal twisting
moment M,, versus the coordinate x/a for thick FSFS square
plate (4/b=0.1) vibrating in the second mode. The twisting
moment M,, is taken at y/b =0.
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Fig. 22. Closed-form, Ritz and FEM solutions of modal shear
force Qx versus the coordinate x/a for thin FSFS square plate
(h/b = 0.01) vibrating in the third mode. The shear force Qx is
taken at y/b = 0.5.
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Fig. 23. Closed-form, Ritz and FEM solutions of modal shear
force Q. versus the coordinate x/a for thick FSFS square plate
(h/b =0.1) vibrating in the third mode. The shear force Q, is
taken at y/b = 0.5.
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Fig. 24. Closed-form, Ritz and FEM solutions of modal twisting
moment M, versus the coordinate x/a for thin FSFS square plate
(h/b=0.01) vibrating in the third mode. The twisting moment
]Tx[xy is taken at y/b = 0.
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Fig. 25. Closed-form, Ritz and FEM solutions of modal twisting
moment }l_/lva versus the coordinate x/a for thick FSFS square
plate (/b = 0.1) vibrating in the third mode. The twisting moment
M,, is taken at y/b = 0.

4. Concluding Remarks

This paper presents exact vibration sotutions for rect-
angular Mindlin plates with two opposite edges simply
supported and the other two edges free. The exact modal
stress-resultants, hitherto unavailable, provide important
benchmark solutions to test the validity, convergence and
accuracy of numerical methods in yielding accurate stress-
resultants in vibrating plates with free edges.

This paper has also shown that a problem exists in the
widely-used Ritz method and finite element method in
predicting accurate values of stress-resultants for plates
with free edges, especially the transverse shear forces
and twisting moments when the plate is thin, Comparing
with the closed-form solutions, the shear stress and
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twisting moment obtained by the Ritz and finite element
methods based on the Mindlin plate theory give rea-
sonably accurate results of these stress resultants when
the plates are thick. For thin plates, however, both the
Ritz method and the finite element method based on the
Kirchhoff (thin) and Mindlin (thick) plate theories fail to
provide accurate results near the free edges of the plates.
Moreover, the stress-resultants such as the shear forces
and twisting moments do not satisfy the natural bound-
ary conditions. It is hoped that the findings in this paper
will spur researchers to refine both the Ritz method and
the finite element method for determining very accurate
stress resultant distributions in vibrating plates having
free edges. Such a development will be extremely useful
to engineers who have to perform hydrodynamic anal-
ysis of very large floating structures that may be mod-
eled as plates with all edges free.
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