• Title/Summary/Keyword: plasma ion

Search Result 1,289, Processing Time 0.031 seconds

Study of Sheath Dynamics in Plasma Source Ion Implantation (플라즈마 이온주입에서 쉬스 동역학에 관한 연구)

  • Kim, G.H.;Cho, C.H.;Choi, Y.W.;Lee, H.S.;Rim, G.H.;Nikiforov, S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1797-1799
    • /
    • 1998
  • Plasma source ion implantation(PSII) is a non-line-of-sight technique for surface modification of materials which is effective for non-planar targets. A apparatus of 30kV PSII is established and plasma characteristics are diagnosed by using a Langmuir probe. A spherical target is immersed in argon plasma and biased negatively by a series of high voltage pulses. Sheath evolution is measured by using a Langmuir probe and compared with the result of computer simulations.

  • PDF

A study on the relationships between plasma parameters and magnetic field (플라즈마 파라메타와 자계의 상관관계에 관한 연구)

  • 김두환;장윤석;조정수;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.426-431
    • /
    • 1996
  • It is well known that the understanding of the complex mechanism of magnetoplasma is closely related with understanding of the collective behavior of discharge plasma parameters such as the cathode-sheath potential, cathode-sheath thickness, electron temperature, electron density, and ambipolar diffusion. In this paper, some of the relationships between these plasma parameters and magnetic field is investigated experimentally with a Langmuir probe in the magnetoplasma generated by D.C diode system. It is found that when magnetic field is increased, cathode-sheath potential, cathode-sheath thickness, and ambipolar diffusion are decreased. In addition, peak ion density obtained as a parameter of ionic signal voltage by Faraday cup method is independent of magnetic field. (author). 9 refs., 11 figs.,1 tab.

  • PDF

Numerical Investigation of RF Pulsing Effect on Ion Energy Distributions at RF-biased Electrodes

  • Kwon, Deuk-Chul;Song, Mi-Young;Yoon, Jung-Sik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.265-272
    • /
    • 2014
  • The ion energy distributions (IEDs) arriving at a substrate strongly affect the etching rates in plasma etching processes. In order to determine the IEDs accurately, it is important to obtain the characteristics of radio frequency (rf) sheath at pulsed rf substrates. However, very few studies have been conducted to investigate pulsing effect on IEDs at multiple rf driven electrodes. Therefore, in this work, we extended previous one-dimensional dynamics model for pulsed-bias electrodes. We obtained the IEDs using the developed rf sheath model and observed that numerically solved IEDs are in a good agreement with the experimental results.

Investigation into SiO2 Etching Characteristics Using Fluorocarbon Capacitively Coupled Plasmas: Etching with Radical/Ion Flux-Controlled

  • Won-nyoung Jeong;Young-seok Lee;Chul-hee Cho;In-ho Seong;Shin-jae You
    • Nanomaterials
    • /
    • v.12 no.24
    • /
    • pp.4457-4467
    • /
    • 2022
  • SiO2 etching characteristics were investigated in detail. Patterned SiO2 was etched using radio-frequency capacitively coupled plasma with pulse modulation in a mixture of argon and fluorocarbon gases. Through plasma diagnostic techniques, plasma parameters (radical and electron density, self-bias voltage) were also measured. In this work, we identified an etching process window, where the etching depth is a function of the radical flux. Then, pulse-off time was varied in the two extreme cases: the lowest and the highest radical fluxes. It was observed that increasing pulse-off time resulted in an enhanced etching depth and the reduced etching depth respectively. This opposing trend was attributed to increasing neutral to ion flux ratio by extending pulse-off time within different etching regimes.

Experimental investigation on effect of ion cyclotron resonance heating on density fluctuation in SOL at EAST

  • Li, Y.C.;Li, M.H.;Wang, M.;Liu, L.;Zhang, X.J.;Qin, C.M.;Wang, Y.F.;Wu, C.B.;Liu, L.N.;Xu, J.C.;Ding, B.J.;Lin, X.D.;Shan, J.F.;Liu, F.K.;Zhao, Y.P.;Zhang, T.;Gao, X.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.207-219
    • /
    • 2022
  • The suppression of high-intensity blob structures in the scrape-off layer (SOL) by ion-cyclotron range of frequencies (ICRF) power, leading to a decrease in the turbulent fluctuation level, is observed first in the Experimental Advanced Superconducting Tokamak (EAST) experiment. This suppression effect from ICRF power injection is global in the whole SOL at EAST, i.e. blob structures both in the regions that are magnetically connected to the active ICRF launcher and in the regions that are not connected to the active ICRF launcher could be suppressed by ICRF power. However, more ICRF power is required to reach the full blob structure suppression effect in the regions that are magnetically unconnected to the active launcher than in the regions that are magnetically connected to the active launcher. Studies show that a possible reason for the blob suppression could be the enhanced Er × B shear flow in the SOL, which is supported by the shaper radial gradient in the floating potential profiles sensed by the divertor probe arrays with increasing ICRF power. The local RF wave power unabsorbed by the core plasma is responsible for the modification of potential profiles in the SOL regions.

Validation of LC-MS/MS Method for Determination of Rabeprazole in Human Plasma : Application of Pharmacokinetics Study (인체 혈장중 라베프라졸의 정량을 위한 LC-MS/MS 분석법 검증 및 단일 용량 투여에 의한 약물동태 연구)

  • Tak, Sung-Kwon;Seo, Ji-Hyung;Ryu, Ju-Hee;Choi, Sang-Joon;Lee, Myung-Jae;Kang, Jong-Min;Lee, Jin-Sung;Hong, Seung-Jae;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.73-78
    • /
    • 2009
  • A simple LC-MS/MS method of rabeprazole in human plasma was developed and validated. Rabeprazole and Internal standard (I.S), omeprazole, were extracted from human plasma by liquid liquid extraction, chromatographic separation of rabaprazole in plasma was achieved at $45^{\circ}C$ with a Shiseido UG120 $C_{18}$ column and methanol-10 mM ammonium acetate buffer (pH 9.42 with ammonium water), as mobile phase. Rabeprazole produced a protonated precursor ion [$(M+H)^+$] at m/z 360.10 and corresponding product ion at m/z 242.21. Internal standard produced a protonated precursor ion [$(M+H)^+$] at 346.09 and corresponding product ion at m/z 198.09. This method showed linear response over the concentration range of $1{\sim}500\;ng/mL$ with correalation coefficient greater than 0.99. The lower limit of quantitation (LLOQ) using 0.2 mL plasma was 1 ng/mL, which was sensitive enough for pharmacokinetics studies. The method was specific and validated with a limit of quantitation of 1 ng/mL. The intra-day and inter-day precision and accuracy were acceptable for all samples including the LLOQ. The applicability of the method was demonstrated by analysis of plasma after administration of a single 10 mg dose to 36 healthy subject. From the plasma rabeprazole concentration versus time curves, the mean $AUC_t$ (The area under the plasma concentration-time curve from time 0 to 12 hr ) was $691.36{\pm}321.88\;ng{\cdot}hr/mL$, $C_{max}$ (maximum plasma drug concentration) of $353.21{\pm}131.52\;ng/mL$ reached $3.4{\pm}1.1\;hr$ after adiministration. The mean biological half-life of rabeprazole was $1.37{\pm}0.75\;hr$. Based on the results, this simple method could readily be used in pharmacokinetics studies.

Formation of Crystalline Copper Thin Films by a Sputtering-assisted Magnetic Field System at Room Temperature

  • Kim, Hyun Sung
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • A sputtering-assisted magnetic field system was successfully developed for depositing crystalline Cu thin films at room temperature. This system employs a plasma source and an ion-beam gun with two magnetic field generators, which is covered with sputtering target and the ion-beam gun, simultaneously serving as sputtering plasma and a magnetic field generator. The formation of crystalline Cu thin films at room temperature was dominated by magnetic fields, which was revealed by preliminary experiments. This system can be employed for producing crystalline metal thin films at room temperature.