DOI QR코드

DOI QR Code

Numerical Investigation of RF Pulsing Effect on Ion Energy Distributions at RF-biased Electrodes

  • Kwon, Deuk-Chul (Plasma Technology Research Center, Nation Fusion Research Institute) ;
  • Song, Mi-Young (Plasma Technology Research Center, Nation Fusion Research Institute) ;
  • Yoon, Jung-Sik (Plasma Technology Research Center, Nation Fusion Research Institute)
  • Received : 2014.09.15
  • Accepted : 2014.09.30
  • Published : 2014.09.30

Abstract

The ion energy distributions (IEDs) arriving at a substrate strongly affect the etching rates in plasma etching processes. In order to determine the IEDs accurately, it is important to obtain the characteristics of radio frequency (rf) sheath at pulsed rf substrates. However, very few studies have been conducted to investigate pulsing effect on IEDs at multiple rf driven electrodes. Therefore, in this work, we extended previous one-dimensional dynamics model for pulsed-bias electrodes. We obtained the IEDs using the developed rf sheath model and observed that numerically solved IEDs are in a good agreement with the experimental results.

Keywords

References

  1. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, K. Tokashiki, J. Y. Lee, and K. Collins, J. Appl. Phys. 106, 103305 (2009). https://doi.org/10.1063/1.3262616
  2. A. Agarwal, S. Rauf, and K. Collins, J. Appl. Phys. 112, 033303 (2012). https://doi.org/10.1063/1.4745877
  3. S. Banna, A. Agarwal, G. Cunge, M. Darnon, E. Pargon, and O. Joubert, J. Vac. Sci. Technol. A 30, 040801 (2012).
  4. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, and K. Collins, Appl. Phys. Lett. 100, 044105 (2012). https://doi.org/10.1063/1.3679075
  5. T. H. Ahn, K. Nakamura, and H. Sugai, Plasma Sources Sci. Technol. 5, 139 (1996). https://doi.org/10.1088/0963-0252/5/2/005
  6. B. Ramamurthi and D. J. Economou, J. Vac. Sci. Technol. A 20, 467 (2001).
  7. S. A. Voronin, M. R. Alexander, and J. W. Bradley, Meas. Sci. Technol. 15, 2375 (2004). https://doi.org/10.1088/0957-0233/15/12/004
  8. A. Agarwal, S. Rauf, and K. Collins, Appl. Phys. Lett. 99, 021501 (2011). https://doi.org/10.1063/1.3610466
  9. P. Subramonium and M. J. Kushner, Appl. Phys. Lett. 79, 2145 (2001). https://doi.org/10.1063/1.1406139
  10. P. Subramonium and M. J. Kushner, J. Appl. Phys. 96, 82 (2004). https://doi.org/10.1063/1.1751636
  11. P. Subramonium and M. J. Kushner, J. Vac. Sci. Technol. A 22, 534 (2004). https://doi.org/10.1116/1.1690251
  12. M. Schaepkens, G. S. Oehrlein, and J. M. Cook, J. Vac. Sci. Technol. B 18, 856 (2000). https://doi.org/10.1116/1.591286
  13. S. Banna, A. Agarwal, K. Tokashiki, H. Cho, S. Rauf, V. Todorow, K. Ramaswamy, K. Collins, P. Stout, J. Y. Lee, J. Yoon, K. Shin, S. J. Choi, H. S. Cho, H. J. Kim, C. Lee, and D. Lymberopoulos, IEEE Trans. Plasma Sci. 37, 1730 (2009). https://doi.org/10.1109/TPS.2009.2028071
  14. K. Tokashiki, H. Cho, S. Banna, J. Y. Lee, K. Shin, V. Todorow, W. S. Kim, K. H. Bai, S. H. Joo, J. D. Choe, K. Ramaswamy, A. Agarwal, S. Rauf, K. Collins, S. J. Choi, H. Cho, H. J. Kim, C. Lee, D. Dymberopoulos, J. Yoon, W. Han, and J. T. Moon, Jpn. J. Appl. Phys. 48, 08DH01 (2009).
  15. S. H. Song and M. J. Kushner, J. Vac. Sci. Technol. A 32, 021306 (2014). https://doi.org/10.1116/1.4863948
  16. S. A. Voronin, M. R. Alexander, and J. W. Bradley, Meas. Sci. Technol. 16, 2446 (2005). https://doi.org/10.1088/0957-0233/16/12/007
  17. M. Brihoum, G. Cunge, M. Darnon, D. Gahan, O. Joubert, and N. St. J. Braithwaite, J. Vac. Sci. Technol. A 31, 020604 (2013).
  18. H. Shin, W. Zhu, L. Xu, V. M. Donnelly, and D. J. Economou, Plasma Sources Sci. Technol. 20, 055001 (2011). https://doi.org/10.1088/0963-0252/20/5/055001
  19. Z. L. Dai and Y. N. Wang, J. Appl. Phys. 92, 6428 (2002). https://doi.org/10.1063/1.1517732
  20. E. V. Barnat and T. M. Lu, Phys. Rev. E 66, 056401 (2002). https://doi.org/10.1103/PhysRevE.66.056401
  21. P. Diomede, D. J. Economou, and V. M. Donnelly, J. Appl. Phys. 111, 123306 (2012). https://doi.org/10.1063/1.4728997
  22. H. Zhang, Z. L. Dai, and Y. N. Wang, Plasma Sci. Technol. 13, 513 (2011). https://doi.org/10.1088/1009-0630/13/5/01
  23. P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997). https://doi.org/10.1063/1.365732
  24. T. Panagopoulos and D. J. Economou, J. Appl. Phys. 85, 3435 (1999). https://doi.org/10.1063/1.369701
  25. A. Metze, D. W. Ernie, and H. J. Oskam, J. Appl. Phys. 60, 3081 (1986). https://doi.org/10.1063/1.337764
  26. D. C. Kwon, W. S. Chang, M. Park, D. H. You, M. Y. Song, S. J. You, Y. H. Im, and J.-S. Yoon, J. Appl. Phys. 109, 073311 (2011). https://doi.org/10.1063/1.3572264
  27. M. A. Lieberman and A. J. Lichtenberg, Principle of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, New York, 2004).