Acknowledgement
This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0400603, 2016YFA0400602), the National Natural Science Foundation of China (Grant No. 11975266, 11675214, 11775259, 11805233, U19A20113), and Shenzhen Clean Energy Research Institute.
References
- X. Litaudon, et al., Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER, Nucl. Fusion 53 (2013), 083012. https://doi.org/10.1088/0029-5515/53/8/083012
- T.F.R. Group, Power deposition in the scrape off layer of TFR Tokamak during ICRF heating, Plasma Phys. Contr. Fusion 26 (1984) 1141. https://doi.org/10.1088/0741-3335/26/9/011
- I.S. Lehrman, et al., Edge measurements during ICRF heating on the PLT Tokamak, Plasma Phys. Contr. Fusion 32 (1990) 51-70. https://doi.org/10.1088/0741-3335/32/1/005
- M. Becoulet, et al., Edge plasma density convection during ion cyclotron resonance heating on Tore Supra, Phys. Plasmas 9 (2002) 2619-2632. https://doi.org/10.1063/1.1472501
- C. Lau, et al., Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod, Plasma Phys. Contr. Fusion 55 (2013), 095003. https://doi.org/10.1088/0741-3335/55/9/095003
- D.A.D. Ippolito, et al., Analysis of RF sheath interactions in TFTR, Nucl. Fusion 38 (1998) 1543-1563. https://doi.org/10.1088/0029-5515/38/10/311
- L. Colas, et al., Understanding the spatial structure of RF-induced SOL modifications, Plasma Phys. Contr. Fusion 49 (2007) B35-B45. https://doi.org/10.1088/0741-3335/49/12B/S02
- E.J. Doyle, et al., Chapter 2: plasma confinement and transport, Nucl. Fusion 47 (2007) S18-S127. https://doi.org/10.1088/0029-5515/47/6/S02
- G.Y. Antar, et al., Experimental evidence of intermittent convection in the edge of magnetic confinement devices, Phys. Rev. Lett. 87 (2001), 065001. https://doi.org/10.1103/physrevlett.87.065001
- M. Endler, et al., Turbulence in the SOL of ASDEX and W7-AS, Phys. Scripta 51 (1995) 610-616. https://doi.org/10.1088/0031-8949/51/5/011
- G.Y. Antar, et al., Universality of intermittent convective transport in the scrape-off layer of magnetically confined devices, Phys. Plasmas 10 (2003) 419-428. https://doi.org/10.1063/1.1536166
- G.G. Craddock, P.H. Diamond, Theory of shear suppression of edge turbulence by externally driven radio-frequency waves, Phys. Rev. Lett. 67 (1991) 1535-1538. https://doi.org/10.1103/PhysRevLett.67.1535
- T. Morisaki, et al., Edge plasma behaviour during auxiliary heating in the compact helical system (CHS), Plasma Phys. Contr. Fusion 37 (1995) 787-797. https://doi.org/10.1088/0741-3335/37/7/008
- G.Y. Antar, et al., The role of power and magnetic connection to the active antenna in the suppression of intermittent structures by ion cyclotron resonance heating, Nucl. Fusion 52 (2012) 103005. https://doi.org/10.1088/0029-5515/52/10/103005
- G. Antar, et al., Convective transport suppression in the scrape-off layer using ion cyclotron resonance heating on the ASDEX Upgrade Tokamak, Phys. Rev. Lett. 105 (2010) 165001. https://doi.org/10.1103/PhysRevLett.105.165001
- W. Zhang, et al., Blob distortion by radio-frequency induced sheared flow, Nucl. Fusion 59 (2019), 074001. https://doi.org/10.1088/1741-4326/ab1f1a
- Y. Wan, et al., Overview of steady state operation of HT-7 and present status of the HT-7U project, Nucl. Fusion 40 (2000) 1057-1068. https://doi.org/10.1088/0029-5515/40/6/304
- H. Yang, et al., Overview of the ICRF antenna coupling experiments on EAST, Nucl. Fusion 61 (2021), 035001. https://doi.org/10.1088/1741-4326/abd640
- B.E. Cherrington, The use of electrostatic probes for plasma diagnostics-a review, Plasma Chem. Plasma Process. 2 (1982) 113-140. https://doi.org/10.1007/BF00633129
- V. Pericoli-Ridolfini, et al., Density, temperature and potential fluctuations in the edge plasma of the FTU tokamak, Nucl. Fusion 38 (1998) 1745-1755. https://doi.org/10.1088/0029-5515/38/12/301
- W.H. Wang, et al., Edge plasma electrostatic fluctuation and anomalous transport characteristics in the Sino-united spherical tokamak, Plasma Phys. Contr. Fusion 47 (2005) 1-16. https://doi.org/10.1088/0741-3335/47/1/001
- L. Wang, et al., Particle and power deposition on divertor targets in EAST H-mode plasmas, Nucl. Fusion 52 (2012), 063024. https://doi.org/10.1088/0029-5515/52/6/063024
- J.C. Xu, et al., Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak, Rev. Sci. Instrum. 87 (2016), 083504. https://doi.org/10.1063/1.4960181
- H. Qu, et al., Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak, Rev. Sci. Instrum. 87 (2016) 11E707. https://doi.org/10.1063/1.4960162
- J.P. Qian, et al., Equilibrium reconstruction in EAST tokamak, Plasma Sci. Technol. 11 (2009) 142-145. https://doi.org/10.1088/1009-0630/11/2/03
- K.H. Burrell, Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices, Phys. Plasmas 4 (1997) 1499-1518. https://doi.org/10.1063/1.872367
- O. Grulke, et al., Comparative experimental study of coherent structures in a simple magnetized torus, Plasma Phys. Contr. Fusion 43 (2001) 525-542. https://doi.org/10.1088/0741-3335/43/4/310
- R.A. Moyer, et al., Beyond paradigm: turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the DIII-D tokamak, Phys. Plasmas 2 (1995) 2397-2407. https://doi.org/10.1063/1.871263
- D.E. Newman, et al., The dynamics of sandpiles with a sheared flow, Phys. Lett. 218 (1996) 58-63. https://doi.org/10.1016/0375-9601(96)00359-3
- R.J. Perkins, et al., Resolving interactions between ion-cyclotron range of frequencies heating and the scrape-off layer plasma in EAST using divertor probes, Plasma Phys. Contr. Fusion 61 (2019), 045011. https://doi.org/10.1088/1361-6587/aaf69c
- P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Pub, Philadelphia, Pennsylvania, 2000.
- R.J. Perkins, et al., High-harmonic fast-wave power flow along magnetic field lines in the scrape-off layer of NSTX, Phys. Rev. Lett. 109 (2012), 045001. https://doi.org/10.1103/physrevlett.109.045001
- A. Boschi, F. Magistrelli, Effect of a R.F, signal on the characteristic of a Langmuir probe, Il Nuovo Cimento 29 (1963) 487-499. https://doi.org/10.1007/bf02750367
- G. Urbanczyk, et al., Characterization of the mutual influence of ion cyclotron and lower hybrid range of frequencies systems on EAST, EPJ Web Conf. 157 (2017), 03057.
- X. Zhang, et al., Experimental observation of enhanced plasma potential due to unabsorbed fast wave on EAST, Nucl. Fusion 59 (2019), 044004. https://doi.org/10.1088/1741-4326/aaffad
- L. Liu, et al., High-frequency B-dot probes used to detect characteristics of ion cyclotron range of frequency waves in EAST, J. Plasma Phys. 85 (2019) 905850214. https://doi.org/10.1017/s0022377819000291
- B.J. Ding, et al., Edge turbulent transport with lower hybrid current drive in the Hefei Tokamak-7, Phys. Plasmas 11 (2004) 207-213. https://doi.org/10.1063/1.1628686
- V.P. Ridolfini, Effect of lower hybrid waves on turbulence and transport of particles and energy in the FTU tokamak scrape-off layer plasma, Plasma Phys. Contr. Fusion 53 (2011) 115001. https://doi.org/10.1088/0741-3335/53/11/115001
- G. Antar, et al., The role of the plasma current in turbulence decrease during lower hybrid current drive, Phys. Plasmas 24 (2017), 032307. https://doi.org/10.1063/1.4978486
- B.J. Ding, et al., Linkage between LHCD and density fluctuation in edge region on EAST, in: 46th EPS Conference on Plasma Physics, Hefei, China, 2019.
- P.L. Andrews, F.W. Perkins, Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation, Phys. Fluids 26 (1983) 2537-2545. https://doi.org/10.1063/1.864443
- P.L. Andrews, F.W. Perkins, Spectral broadening of lower-hybrid waves by time-dependent density-fluctuations, Phys. Fluids 26 (1983) 2546-2557. https://doi.org/10.1063/1.864444
- P.T. Bonoli, Toroidal and scattering effects on lower-hybrid wave propagation, Phys. Fluids 25 (1982) 359-375. https://doi.org/10.1063/1.863744
- M. Porkolab, et al., Observation of parametric instabilities in lower-hybrid radio-frequency heating of tokamaks, Phys. Rev. Lett. 38 (1977) 230-233. https://doi.org/10.1103/PhysRevLett.38.230
- M. Porkolab, Parametric instabilities due to lower-hybrid radio frequency heating of tokamak plasmas, Phys. Fluids 20 (1977) 2058-2075. https://doi.org/10.1063/1.861825
- E. Barbato, The role of non-resonant collision dissipation in lower hybrid current driven plasmas, Nucl. Fusion 51 (2011) 103032. https://doi.org/10.1088/0029-5515/51/10/103032
- G.M. Wallace, et al., Lower hybrid current drive at high density in the multi-pass regime, Phys. Plasmas 19 (2012), 062505. https://doi.org/10.1063/1.4729734
- N. Bertelli, et al., The effects of the scattering by edge plasma density fluctuations on lower hybrid wave propagation, Plasma Phys. Contr. Fusion 55 (2013), 074003. https://doi.org/10.1088/0741-3335/55/7/074003