• 제목/요약/키워드: plasma deposition

검색결과 1,721건 처리시간 0.033초

PECVD법에 의해 제조된 Sb-doped $SnO_2$ 박막의 증착거동 및 전기적 특성 (Deposition Behaviors and Electrical Properties of Sb-doped $SnO_2$ Films by Plasma Enhanced Chemical Vapor Deposition)

  • 김근수;서지윤;이희영;김광호
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.194-200
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Corning glass 1737 substrate by plasma enhanced chemical vapor deposition(PECVD) technique using a gas mixture of SnCl4/SbCl5/O2/Ar. The deposition behaviors of tin oxide films by PECVD were compared with those by thermal CVD, and effects of deposition temperature, r.f. power and Sb doping on the electrical properties of tin oxide films were investigated. PECVD technique largely increased the deposition rate and smoothed the surface of tin oxide films compared with thermal CVD. Electrical resistivity decreased with doping of Sb due to the increase of carrier concentration. However, large doping of Sb diminished carrier concentration and mobility due to the decrease of crystallinity, which resulted in the increase of electrical resistivity. As the deposition temperature and r.f. power increased, Cl content in the film decreased.

  • PDF

직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구 (Microstrcture and Mechanical Properties of HfN Films Deposited by dc and Inductively Coupled Plasma Assisted Magnetron Sputtering)

  • 장훈;전성용
    • 한국표면공학회지
    • /
    • 제53권2호
    • /
    • pp.67-71
    • /
    • 2020
  • For deposition technology using plasma, it plays an important role in improving film deposited with high ionization rate through high density plasma. Various deposition methods such as high-power impulse magnetron sputtering and ion-beam sputtering have been developed for physical vapor deposition technology and are still being studied. In this study, it is intended to control plasma using inductive coupled plasma (ICP) antennas and use properties to improve the properties of Hafnium nitride (HfN) films using ICP assisted magnetron sputtering (ICPMS). HfN film deposited using ICPMS showed a finer grain sizes, denser microstructure and better mechanical properties as ICP power increases. The best mechanical properties such as nanoindentation hardness of 47 GPa and Young's modulus of 401 GPa was obtained from HfN film deposited using ICPMS at ICP power of 200 W.

Expanding Thermal Plasma CVD of Silicon Thin Films and Nano-Crystals: Fundamental Studies and Applications

  • Sanden, Richard Van De
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2012
  • In this presentation I will review the expanding thermal plasma chemical vapour deposition (ETP-CVD) technology, a deposition technology capable of reaching ultrahigh deposition rates. High rate deposition of a-Si:H, ${\mu}c$-Si:H, a-SiNx:H and silicon nanocrystals will be discussed and their various applications, mainly for photovoltaic applications demonstrated. An important aspect over the years has been the fundamental investigation of the growth mechanism of these films. The various in situ (plasma) and thin film diagnostics, such as Langmuir probes, retarding field analyzer, (appearance potential) mass spectrometry and cavity ring absorption spectroscopy, spectroscopic ellipsometry to name a few, which were successfully applied to measure radical and ion density, their temperature and kinetic energy and their reactivity with the growth surface. The insights gained in the growth mechanism provided routes to novel applications of the ETP-CVD technology, such as the ultrahigh high growth rate of silicon nanorystals and surface passivation of c-Si surfaces.

  • PDF

Low-Temperature Growth of $SiO_2$ Films by Plasma-Enhanced Atomic Layer Deposition

  • Lim, Jung-Wook;Yun, Sun-Jin;Lee, Jin-Ho
    • ETRI Journal
    • /
    • 제27권1호
    • /
    • pp.118-121
    • /
    • 2005
  • Silicon dioxide ($SiO_2$) films prepared by plasma-enhanced atomic-layer deposition were successfully grown at temperatures of $100\;to\;250^{\circ}C$, showing self-limiting characteristics. The growth rate decreases with an increasing deposition temperature. The relative dielectric constants of $SiO_2$ films are ranged from 4.5 to 7.7 with the decrease of growth temperature. A $SiO_2$ film grown at $250^{\circ}C$ exhibits a much lower leakage current than that grown at $100^{\circ}C$ due to its high film density and the fact that it contains deeper electron traps.

  • PDF

Low Temperature Plasma-Enhanced Atomic Layer Deposition Cobalt

  • 김재민;김형준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.28.2-28.2
    • /
    • 2009
  • Cobalt thin film was fabricated by a novel NH3-based plasma-enhanced atomic layer deposition(PE-ALD) using Co(CpAMD) precursor and $NH_3$ plasma. The PE-ALD Co thin films were produced well on both thermally grown oxide (100 nm) $SiO_2$ and Si(001) substrates. Chemical bonding states and compositions of PE-ALD Co films were analyzed by XPS and discussed in terms of resistivity and impurity level. Especially, we successfully developed PE-ALD Code position at very low growth temperature condition as low as $T_s=100^{\circ}C$, which enabled the fabrication of Co patterns through lift-off method after the deposition on PR patterned substrate without any thermal degradation.

  • PDF

플라즈마 화학기상법을 이용하여 증착된 박막 전하 농도의 신경망 모델링 (Neural Network Modeling of Charge Concentration of Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition)

  • 김우석;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.108-110
    • /
    • 2006
  • A prediction model of charge concentration of silicon nitride (SiN) thin films was constructed by using neural network and genetic algorithm. SIN films were deposited by plasma enhanced chemical vapor deposition and the deposition process was characterized by means of $2^{6-1}$ fractional factorial experiment. Effect of five training factors on the model prediction performance was optimized by using genetic algorithm. This was examined as a function of the learring rate. The root mean squared error of optimized model was 0.975, which is much smaller than statistical regression model by about 45%. The constructed model can facilitate a Qualitative analysis of parameter effects on the charge concentration.

  • PDF

Development of High Flux Metal Ion Plasma Source for the Ion Implantation and Deposition

  • Kim, Do-Yun;Lee, Eui-Wan
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제7권2호
    • /
    • pp.45-56
    • /
    • 2003
  • A high flux metal plasma pulse ion source, which can simultaneously perform ion implantation and deposition, was developed and tested to evaluate its performance using the prototype. Flux of ion source was measured to be 5 A and bi-polar pulse power supply with a peak voltage of 250 V, repetition of 20 Hz and width of 100 ${\mu}\textrm{s}$ has an output current of 2 kA and average power of 2 kW. Trigger power supply is a high voltage pulse generator producing a peak voltage of 12 kV, peak current of 50 A and repetition rate of 20 Hz. The acceleration column for providing target energy up to ion implantation is carefully designed and compatible with UHV (ultra high vacuum) application. Prototype systems including various ion sources are fabricated for the performance test in the vacuum and evaluated to be more competitive than the existing equipments through repeated deposition experiments.

  • PDF

탄소의 원료로 일산화탄소를 사용한 다이아몬드 박막 성장 관찰에 대한 분광 Ellipsometry의 응용 (The Spectroscopic Ellipsometry Application to the Diamond Thin Film Growth Using Carbon Monoxide(CO) as a Carbon Source)

  • 홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제11권5호
    • /
    • pp.371-377
    • /
    • 1998
  • The plasma chemical vapor deposition is one of the most utilized techniques for the diamond growth. As the applications of diamond thin films prepared by plasma chemical vapor deposition(CVD) techniques become more demanding, improved fine-tuning and control of the process are required. The important parameters in diamond film deposition include the substrate temperature, $CO/H_2$gas flow ratio, total gas pressure, and gas excitation power. With the spectroscopic ellipsometry, the substrate temperature as well as the various parameters of the film can be determined without the physical contact and the destructiveness under the extreme environment associated with the diamond film deposition. Through this paper, the important parameters during the diamond film growth using $CO+H_2$are determined and it is shown that $sp^2$ C in the diamond film is greatly reduced.

  • PDF

대면적화된 마이크로파 플라즈마를 이용하여 실리콘 웨이퍼에 증착한 다결정 실리콘의 특성 연구 (Characteristics of Polysilicon Films Deposited on Silicon Wafers with Enlarged Microwave Plasma)

  • 류근걸
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.604-608
    • /
    • 1999
  • Semiconductor industry requires the development of new technology such as 300 mm technology, suitable for manufacturing the next generation dervices. A promising process for realizing 300 mm technology can be achieved by using enlarged microwave plasma chemical vapor deposition (MWCVD) technology. In this work, we used radial line slot antenna for enlarging microwave plasma area, and carried ut the deposition of polysilicon films using enlarged MWCVD for the first time in Korea. The results was as follows. Deposited polysilicon films showed various degrees of crystallinity as well as epitaxy to silicon substrates even at low temperature of $300^{\circ}C$. Deposition rates also controled crystallization behavior and slo deposition rates showed very high crystallinity. It could be said that enlarged MWCVD system and technology was worth to get attraction as one os future technologies for 1 G DRAM era.

  • PDF

Effect of Microstructure of Substrate on the Metallization Characteristics of the Electroless Copper Deposition for ULSI Interconnection Effect of Plasma

  • 홍석우;이용선;박종완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.86-86
    • /
    • 2003
  • Copper has attracted much attention in the deep submicron ULSI metallization process as a replacement for aluminum due to its lower resistivity and higher electromigration resistance. Electroless copper deposition method is appealing because it yields conformal, high quality copper at relatively low cost and a low processing temperature. In this work, it was investigated that effect of the microstructure of the substrate on the electroless deposition. The mechanism of the nucleation and growth of the palladium nuclei during palladium activation was proposed. Electroless copper deposition on TiN barriers using glyoxylic acid as a reducing agent was also investigated to replace toxic formaldehyde. Furthermore, electroless copper deposition on TaN$\sub$x/ barriers was examined at various nitrogen flow rate during TaN$\sub$x/ deposition. Finally, it was investigated that the effect of plasma treatment of as-deposited TaN$\sub$x/ harriers on the electroless copper deposition.

  • PDF