• 제목/요약/키워드: plane curves

검색결과 254건 처리시간 0.023초

Root Test for Plane Polynomial Pythagorean Hodograph Curves and It's Application (평면 다항식 PH 곡선에 대한 근을 이용한 판정법과 그 응용)

  • Kim, Gwang Il
    • Journal of the Korea Computer Graphics Society
    • /
    • 제6권1호
    • /
    • pp.37-50
    • /
    • 2000
  • Using the complex formulation of plane curves which R. T. Farouki introduced, we can identify any plane polynomial curve with only a polynomial with complex coefficients. In this paper, using the well-known fundamental theorem of algebra, we completely factorize the polynomial over the complex number field C and from the completely factorized form of the polynomial, we find a new necessary and sufficient condition for a plane polynomial curve to be a Pythagorean-hodograph curve, obseving the set of all roots of the complex polynomial corresponding to the plane polynomial curve. Applying this method to space polynomial curves in the three dimensional Minkowski space $R^{2,1}$, we also find the necessary and sufficient condition for a polynomial curve in $R^{2,1}$ to be a PH curve in a new finer form and characterize all possible curves completely.

  • PDF

Areas associated with a Strictly Locally Convex Curve

  • Kim, Dong-Soo;Kim, Dong Seo;Kim, Young Ho;Bae, Hyun Seon
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.583-595
    • /
    • 2016
  • Archimedes showed that for a point P on a parabola X and a chord AB of X parallel to the tangent of X at P, the area S of the region bounded by the parabola X and chord AB is four thirds of the area T of triangle ${\Delta}ABP$. It is well known that the area U formed by three tangents to a parabola is half of the area T of the triangle formed by joining their points of contact. Recently, the first and third authors of the present paper and others proved that among strictly locally convex curves in the plane ${\mathbb{R}}^2$, these two properties are characteristic ones of parabolas. In this article, in order to generalize the above mentioned property $S={\frac{4}{3}}T$ for parabolas we study strictly locally convex curves in the plane ${\mathbb{R}}^2$ satisfying $S={\lambda}T+{\nu}U$, where ${\lambda}$ and ${\nu}$ are some functions on the curves. As a result, we present two conditions which are necessary and sufficient for a strictly locally convex curve in the plane to be an open arc of a parabola.

WEIERSTRASS SEMIGROUPS AT PAIRS OF NON-WEIERSTRASS POINTS ON A SMOOTH PLANE CURVE OF DEGREE 5

  • Cheon, Eun Ju;Kim, Seon Jeong
    • The Pure and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.251-267
    • /
    • 2020
  • We classify all semigroups each of which arises as a Weierstrass semigroup at a pair of non-Weierstrass points on a smooth plane curve of degree 5. First we find the candidates of semigroups by computing the dimensions of linear series on the curve. Then, by constructing examples of smooth plane curves of degree 5, we prove that each of the candidates is actually a Weierstrass semigroup at some pair of points on the curve. We need to study the systems of quadratic curves, which cut out the canonical series on the plane curve of degree 5.

AREA OF TRIANGLES ASSOCIATED WITH A STRICTLY LOCALLY CONVEX CURVE

  • Kim, Dong-Soo;Kim, Dong Seo;Bae, Hyun Seon;Kim, Hye-Jung
    • Honam Mathematical Journal
    • /
    • 제37권1호
    • /
    • pp.41-52
    • /
    • 2015
  • It is well known that the area U of the triangle formed by three tangents to a parabola X is half of the area T of the triangle formed by joining their points of contact. Recently, it was proved that this property is a characteristic one of parabolas. That is, among strictly locally convex $C^{(3)}$ curves in the plane $\mathbb{R}^2$ parabolas are the only ones satisfying the above area property. In this article, we study strictly locally convex curves in the plane $\mathbb{R}^2$. As a result, generalizing the above mentioned characterization theorem for parabolas we present some conditions which are necessary and sufficient for a strictly locally convex $C^{(3)}$ curve in the plane to be an open part of a parabola.

A Study on the Fast Method for Polygonal Approximation of Chain-Coded Plane Curves (이차원 곡선의 고속 다각형 근사화 방법에 관한 연구)

  • 조현철;박래홍;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제25권1호
    • /
    • pp.56-62
    • /
    • 1988
  • For shape description, a fast sequential method for polygonal approximation of chaincoded plane curves which are object boundaries is proposed. The proposed method performs polygonal approximation by use of the distance error from one point to a line, and its performance is enhanced by the smoothed slopes of lines. Furthermore, accumulated distance error and variable distance error threshold are proposed in order to consider and implement the visual characteristics of the human being.

  • PDF

A pointed blaschke manifold in euclidean space

  • Kim, Young-Ho
    • Journal of the Korean Mathematical Society
    • /
    • 제31권3호
    • /
    • pp.393-400
    • /
    • 1994
  • Subminifolds of Euclidean spaces have been studied by examining geodesics of the submanifolds viewed as curves of the ambient Euclidean spaces ([3], [7], [8], [9]). K.Sakamoto ([7]) studied submanifolds of Euclidean space whose geodesics are plane curves, which were called submanifolds with planar geodesics. And he completely calssified such submanifolds as either Blaschke manifolds or totally geodesic submanifolds. We now ask the following: If there is a point p of the given submanifold in Euclidean space such that every geodesic of the submanifold passing through p is a plane curve, how much can we say about the submanifold\ulcorner In the present paper, we study submanifolds of euclicean space with such property.

  • PDF

ON THE DEFECTS OF HOLOMORPHIC CURVES

  • Yang, Liu;Zhu, Ting
    • Bulletin of the Korean Mathematical Society
    • /
    • 제57권5호
    • /
    • pp.1195-1204
    • /
    • 2020
  • In this paper we consider the holomorphic curves (or derived holomorphic curves introduced by Toda in [15]) with maximal defect sum in the complex plane. Some well-known theorems on meromorphic functions of finite order with maximal sum of defects are extended to holomorphic curves in projective space.

FREE AND NEARLY FREE CURVES FROM CONIC PENCILS

  • Dimca, Alexandru
    • Journal of the Korean Mathematical Society
    • /
    • 제55권3호
    • /
    • pp.705-717
    • /
    • 2018
  • We construct some infinite series of free and nearly free curves using pencils of conics with a base locus of cardinality at most two. These curves have an interesting topology, e.g. a high degree Alexander polynomial that can be explicitly determined, a Milnor fiber homotopy equivalent to a bouquet of circles, or an irreducible translated component in the characteristic variety of their complement. Monodromy eigenspaces in the first cohomology group of the corresponding Milnor fibers are also described in terms of explicit differential forms.

Divide Knot Presentation of Knots of Berge's Sporadic Lens Space Surgery

  • Yamada, Yuichi
    • Kyungpook Mathematical Journal
    • /
    • 제60권2호
    • /
    • pp.255-277
    • /
    • 2020
  • Divide knots and links, defined by A'Campo in the singularity theory of complex curves, is a method to present knots or links by real plane curves. The present paper is a sequel of the author's previous result that every knot in the major subfamilies of Berge's lens space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented by an L-shaped curve as a divide knot. In the present paper, L-shaped curves are generalized and it is shown that every knot in the minor subfamilies, called sporadic examples of Berge's lens space surgery, is presented by a generalized L-shaped curve as a divide knot. A formula on the surgery coefficients and the presentation is also considered.

A STUDY ON QUADRATIC CURVES AND GENERALIZED ECCENTRICITY IN POLAR TAXICAB GEOMETRY

  • Kim, Kyung Rok;Park, Hyun Gyu;Ko, Il Seog;Kim, Byung Hak
    • Korean Journal of Mathematics
    • /
    • 제22권3호
    • /
    • pp.567-581
    • /
    • 2014
  • Over the years, there has been much research conducted on quadratic curves and the set of points with the generalized notion of eccentricity in a plane with metrics such as taxicab distance or Chinese-checker distance. On the other hand, polar taxicab distance has been newly proposed on the polar coordinate system, a type of curvilinear coordinate system, to overcome the limitation of pre-existing metrics in terms of describing curved routes. Previous study has looked into the fundamental properties of this metric. From this point of view, we study the quadratic curves and the set of points with the generalized notion of eccentricity in a plane with polar taxicab distance.