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Abstract. Archimedes showed that for a point P on a parabola X and a chord AB of X
parallel to the tangent of X at P , the area S of the region bounded by the parabola X and
chord AB is four thirds of the area T of triangle △ABP . It is well known that the area
U formed by three tangents to a parabola is half of the area T of the triangle formed by
joining their points of contact. Recently, the first and third authors of the present paper
and others proved that among strictly locally convex curves in the plane R2, these two
properties are characteristic ones of parabolas.

In this article, in order to generalize the above mentioned property S = 4
3
T for parabo-
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las we study strictly locally convex curves in the plane R2 satisfying S = λT + νU , where

λ and ν are some functions on the curves. As a result, we present two conditions which

are necessary and sufficient for a strictly locally convex curve in the plane to be an open

arc of a parabola.

1. Introduction

Usually, a regular plane curve X : I → R2 defined on an open interval is called
convex if, for all t ∈ I, the traceX(I) lies entirely on one side of the closed half-plane
determined by the tangent line at X(t) ([6]). A regular plane curve X : I → R2

is called locally convex if, for each t ∈ I there exists an open subinterval J ⊂ I
containing t such that the curve X|J restricted to J is a convex curve.

Hereafter, we will say that a locally convex curve X in the plane R2 is strictly
locally convex if the curve is smooth (that is, of class C(3)) and is of positive cur-
vature κ with respect to the unit normal N pointing to the convex side. Hence,
in this case we have κ(s) = ⟨X ′′(s), N(X(s))⟩ > 0, where X(s) is an arc-length
parametrization of X.

When f : I → R is a smooth function defined on an open interval, we will also
say that f is strictly convex if the graph of f has positive curvature κ with respect
to the upward unit normal N . This condition is equivalent to the positivity of f ′′(x)
on I.

Suppose that X denotes a strictly locally convex C(3) curve in the plane R2 with
the unit normal N pointing to the convex side. For a fixed point P = A ∈ X and a
sufficiently small number h > 0, we consider the line m passing through P +hN(P )
which is parallel to the tangent ℓ to X at P and the points A1 and A2 where the
line m intersects the curve X.

Let us denote by ℓ1, ℓ2 the tangent lines of X at the points A1, A2 and by
B,B1, B2 the points of intersection ℓ1 ∩ ℓ2, ℓ ∩ ℓ1, ℓ ∩ ℓ2, respectively. We let
LP (h), ℓP (h) and HP (h) denote the lengths |A1A2| and |B1B2| of the corresponding
segments and the height of the triangle △BA1A2 from the vertex B to the edge
A1A2, respectively.

We also consider TP (h), UP (h), VP (h) and WP (h) defined by the area | △
AA1A2|, | △ BB1B2|, | △ BA1A2| of corresponding triangles and the area
|�A1A2B2B1| of trapezoid �A1A2B2B1, respectively. Then, obviously we have

TP (h) =
1

2
hLP (h)

and

UP (h) =
1

2
{HP (h)− h}ℓP (h).

If we put SP (h) the area of the region bounded by the curve X and chord A1A2,
then we have ([18])

S′
P (h) = LP (h).

It is well known that parabolas satisfy the following properties
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Proposition 1.1. Suppose that X denotes an open arc of a parabola. For an
arbitrary point P ∈ X and a sufficiently small number h > 0, it satisfies

SP (h) =
4

3
TP (h),(1.1)

UP (h) =
1

2
TP (h)(1.2)

and

SP (h) =
8

3
UP (h).(1.3)

In fact, Archimedes showed that parabolas satisfy (1.1) ([25]).

Recently, in [18] the first and third authors of the present paper and others
proved that (1.1) is a characteristic property of parabolas and established some
characterizations of parabolas, which are the converses of well-known properties
of parabolas originally due to Archimedes ([25]). For the higher dimensional ana-
logues of some results in [18], see [16] and [17]. Some characterizations of hyper-
spheres, ellipsoids, elliptic hyperboloids, hypercylinders andW -curves in the (n+1)-
dimensional Euclidean space En+1 were given in [1, 4, 7, 8, 13, 15, 22]. In [19], some
characteristic properties for hyperbolic spaces embedded in the Minkowski space
were established.

In [12], it was shown that (1.2) is also a characteristic property of parabolas,
which gives an affirmative answer to Question 3 in [21]. Thus, we have

Proposition 1.2. Suppose that X denotes a strictly locally convex C(3) curve in
the plane R2. Then X is an open arc of a parabola if and only if it satisfies one of
the following conditions.
1) For all P ∈ X and sufficiently small h > 0,

(1.4) SP (h) = λ(P )TP (h),

where λ(P ) is a function of P .
2) For all P ∈ X and sufficiently small h > 0,

(1.5) UP (h) = η(P )TP (h),

where η(P ) is a function of P . 2

Proof. For a proof of 1), see Theorem 3 of [18].
For 2), we refer to Theorem 1.3 of [12].

In Proposition 1.2, obviously we have λ(P ) = 4/3 and η(P ) = 1/2.
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In this article, in order to generalize the property (1.4) for parabolas we study
strictly locally convex C(3) curves in the plane R2.

As a result, first of all in Section 3 we establish a characterization theorem for
parabolas, which shows that (1.3) is a characteristic property of parabolas.

Theorem 1.3. Let X denote a strictly locally convex C(3) curve in the plane R2.
Then the following are equivalent.
1) There exists a function ν(P ) of P ∈ X such that for all P ∈ X and sufficiently
small h > 0 the curve X satisfies

(1.6) SP (h) = ν(P )UP (h).

2) X is an open arc of a parabola.

In Theorem 1.3, obviously we have ν(P ) = 8/3.

Combining (1.4) and (1.6), it follows from (1.1) and (1.3) that for an arbitrary
point P and a sufficiently small number h > 0, parabolas satisfy

(1.7) SP (h) = λ(P )TP (h) + ν(P )UP (h),

whenever λ(P ) and ν(P ) are functions of P with

(1.8) λ(P ) +
1

2
ν(P ) =

4

3
.

We now naturally raise a question as follows:

Question 1.4. Suppose that X denotes a strictly locally convex C(3) curve in the
plane R2 satisfying (1.7) for some functions λ(P ) and ν(P ) of P with (1.8). Then,
is it an open arc of a parabola?

In Section 4, we give a partial affirmative answer to Question 1.4 as follows:

Theorem 1.5. Suppose that X denotes a strictly locally convex C(3) curve in the
plane R2. Then the following are equivalent.
1) There exist functions λ(P ) and ν(P ) of P ∈ X with

(1.9) ν = ν(P ) ∈ R− (0,
8

27
]

such that for all P ∈ X and sufficiently small h > 0 the curve X satisfies

SP (h) = λ(P )TP (h) + ν(P )UP (h).

2) X is an open arc of a parabola.

In Theorem 1.5, λ(P ) and ν(P ) necessarily satisfy (1.8).

In [5], it was shown that parabolas satisfy TP (h) = 2UP (h) for all points P
and h > 0. This property of parabolas was proved to be a characteristic one of



Areas associated with a Strictly Locally Convex Curve 587

parabolas ([12, 21, 23]). For some characterizations of parabolas or conic sections
by properties of tangent lines, see [9] and [20]. In [14], using curvature function κ
and support function h of a plane curve, the first and third authors of the present
paper gave a characterization of ellipses and hyperbolas centered at the origin.

Among the graphs of functions, in [2, 3] Á. Bényi et al. gave some characteriza-
tions of parabolas. B. Richmond and T. Richmond established a dozen characteri-
zations of parabolas using elementary techniques ([24]). In their papers, a parabola
means the graph of a quadratic polynomial in one variable.

Throughout this article, all curves are of class C(3) and connected, unless oth-
erwise mentioned.

2. Preliminaries

In order to prove Theorems 1.3 and 1,5 in Section 1, we need the following
lemma.

Lemma 2.1. Suppose that X denotes a strictly locally convex C(3) curve in the
plane R2 with the unit normal N pointing to the convex side. Then we have

(2.1) lim
h→0

1√
h
LP (h) =

2
√
2√

κ(P )
,

(2.2) lim
h→0

1

h
√
h
SP (h) =

4
√
2

3
√
κ(P )

,

(2.3) lim
h→0

1√
h
ℓP (h) =

√
2√

κ(P )
,

(2.4) lim
h→0

1

h
√
h
TP (h) =

√
2√

κ(P )

and

(2.5) lim
h→0

1

h
√
h
UP (h) =

√
2

2
√
κ(P )

,

where κ(P ) is the curvature of X at P with respect to the unit normal N .

Proof. It follows from [18] that (2.1) and (2.2) hold. For proofs of (2.3) and (2.5),
see [12]. For a proof of (2.4), we refer to [21]. 2

Next, we need the following lemma.
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Lemma 2.2. Suppose that X denotes a strictly locally convex C(3) curve in the
plane R2 with the unit normal N pointing to the convex side. Then we have

(2.6) hL′
P (h) = LP (h)− ℓP (h),

where L′
P (h) means the derivative of LP (h) with respect to h.

Proof. For a proof, see Lemma 2.3 in [12]. 2

Let us recall that LP (h), ℓP (h) and HP (h) denote the lengths |A1A2| and
|B1B2| of the corresponding segments and the height of the triangle △BA1A2 from
the vertex B to the edge A1A2, respectively. Then, we get

(2.7) LP (h) : ℓP (h) = HP (h) : HP (h)− h

,which yields

(2.8) HP (h) =
hLP (h)

LP (h)− ℓP (h)
.

Together with Lemma 2.2, it follows from (2.8) that the following holds:

(2.9) HP (h) =
LP (h)

L′
P (h)

.

At last, we need a lemma which is useful in the proof of Theorems 1.3 and 1.5
in Section 1 ([11]). For reader’s convenience, we give a brief proof here.

Lemma 2.3. Suppose that X denotes a strictly locally convex C(3) curve in the
plane R2. Then, the height function HP (h) satisfies

(2.10) lim
h→0

HP (h)

h
= 2.

Proof. It follows from (2.8) that

(2.11)

lim
h→0

HP (h)

h
= lim

h→0

LP (h)

LP (h)− ℓP (h)

= lim
h→0

{1− ℓP (h)

LP (h)
}−1.

Thus, together with (2.11), (2.1) and (2.3) complete the proof of Lemma 2.3. 2

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.
It is trivial to show that any open arcs of parabolas satisfy 1) in Theorem 1.3

with ν(P ) = 8/3.
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Conversely, suppose that X denotes a strictly locally convex C(3) curve in the
plane R2 which satisfies for all P ∈ X and sufficiently small h > 0

SP (h) = ν(P )UP (h),

where ν = ν(P ) is a function of P ∈ X. Then, it follows from Lemma 2.1 that
ν = 8/3.

We fix an arbitrary point P ∈ X.
Since 2UP (h) = (HP (h)− h)ℓP (h), (2.8) shows that

(3.1)
2UP (h) =

LP (h)

HP (h)
{HP (h)− h}2

= L′
P (h){HP (h)− h}2,

where the second equality follows from (2.9). Hence we see that (1.6) becomes

(3.2) SP (h) =
4

3
L′
P (h){HP (h)− h}2.

By differentiating (3.2) with respect to h, we get

(3.3) LP (h) =
4

3
{L′′

P (h)(HP (h)− h)2 + 2L′
P (h)(HP (h)− h)(H ′

P (h)− 1)}.

On the other hand, by differentiating (2.9) with respect to h, we obtain

(3.4) L′′
P (h) =

L′
P (h)

2

LP (h)
(1−H ′

P (h)).

Hence, using (2.9) and (3.4), (3.3) may be rewritten as

(3.5) LP (h) =
4

3

(HP (h)
2 − h2)(H ′

P (h)− 1)

HP (h)2
LP (h).

Dividing the both sides of (3.3) by LP (h), we have

(3.6) (HP (h)
2 − h2)(H ′

P (h)− 1) =
3

4
HP (h)

2.

Let us denote by y = f(x) the height functionHP (x) for sufficiently small x > 0.
Then, it follows from (3.6) that the function y = f(x) satisfies

(3.7)
dy

dx
= 1 +

3y2

4(y2 − x2)
,

which is a homogeneous differential equation.
If we put v = y/x, from (3.7) we get

(3.8) x
dv

dx
= − g(v)

4(v2 − 1)
,
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where we denote

(3.9) g(v) = 4v3 − 7v2 − 4v + 4.

It follows from Lemma 2.3 that

(3.10) lim
x→0

v(x) = 2.

Note that

(3.11) g(v) = (v − 2)(4v2 + v − 2) = 4(v − 2)(v − α)(v − β),

where

(3.12) α =
−1−

√
33

8
, β =

−1 +
√
33

8
.

We consider two cases as follows.

Case 1. Suppose that dv/dx = 0 on an interval (0, ϵ) for some ϵ > 0.

Then v is constant and hence it follows from (3.10) that v = 2. This shows that

(3.13) HP (h) = 2h,

and hence using (2.9), (3.13) becomes 2hL′
P (h) = LP (h). By integrating this equa-

tion we get

(3.14) LP (h) =
2
√
2√

κ(P )

√
h.

Integrating (3.14) implies that

(3.15) SP (h) =
4
√
2

3
√
κ(P )

h
√
h.

Together with (3.14), (3.15) shows that at the point P for sufficiently small
h > 0 the curve X satisfies

SP (h) =
4

3
TP (h).

Case 2. Suppose that dv/dx ̸= 0.

In this case, the differential equation (3.8) becomes

(3.16)
v2 − 1

(v − 2)(v − α)(v − β)
dv +

1

x
dx = 0,
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which may be rewritten as

(3.17) { γ

v − α
+

δ

v − β
+

η

v − 2
}dv + 1

x
dx = 0,

where we put

γ =
11− 3

√
33

88
, δ =

11 + 3
√
33

88
, η =

3

4
.

By integrating (3.17), we get

(3.18) x|v − 2|η|v − α|γ |v − β|δ = C,

where C is a constant of integration. By letting x→ 0, Lemma 2.3 yields that the
left hand side of (3.18) tends to zero, which implies that the constant C must be
zero. Hence v must be 2. This contradiction shows that this case cannot occur.

Combining Cases 1 and 2, we see that at the point P ∈ X for sufficiently small
h > 0 the curve X satisfies

SP (h) =
4

3
TP (h).

Since P ∈ X was arbitrary, Proposition 1.2 completes the proof of Theorem 1.3.

4. Proof of Theorem 1.5

In this section, we prove Theorem 1.5.
It follows from Proposition 1.1 that any open arcs of parabolas satisfy 1) in

Theorem 1.5.
Conversely, suppose that X is a strictly locally convex C(3) curve in the plane

R2 which satisfies for all P ∈ X and sufficiently small h > 0

SP (h) = λ(P )TP (h) + ν(P )UP (h),

where λ = λ(P ) and ν = ν(P ) are some functions of P ∈ X with

ν = ν(P ) ∈ R− (0,
8

27
]

Then, it follows from Lemma 2.1 that for all P ∈ X the curve X satisfies

λ(P ) +
1

2
ν(P ) =

4

3
.

Now, we fix an arbitrary point P ∈ X.
From now on, we may assume that ν = ν(P ) ̸= 0 because otherwise, at the

point P the curve X satisfies (1.1) for all sufficiently small h > 0. Hence we assume
that ν < 0 or ν > 8/27.

Since 2TP (h) = hLP (h) and UP (h) is given by (3.1), from (1.7) we get

(4.1) 2SP (h) = λ(P )hLP (h) + ν(P )L′
P (h){HP (h)− h}2.
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By differentiating (4.1) with respect to h, we obtain

(4.2)
2LP (h) = λ{LP (h) + hL′

P (h)}
+ ν(HP (h)− h){L′′

P (h)(HP (h)− h) + 2L′
P (h)(H

′
P (h)− 1)}.

Together with (2.9), (3.4) shows that (4.2) may be rewritten as

(4.3)

2LP (h) = λ
LP (h)

HP (h)
(HP (h) + h)

+ ν
LP (h)

HP (h)2
(HP (h)

2 − h2)(H ′
P (h)− 1).

Multiplying the both sides of (4.3) by HP (h)
2/LP (h), we have

(4.4) λHP (h)(HP (h) + h) + ν(HP (h)
2 − h2)(H ′

P (h)− 1) = 2HP (h)
2.

Or equivalently, we get

(4.5) (2− λ+ ν)HP (h)
2 = λhHP (h) + νh2 + ν(HP (h)

2 − h2)H ′
P (h).

Let us denote by y = f(x) the height functionHP (x) for sufficiently small x > 0.
Then, it follows from (4.5) that the height function y = f(x) satisfies

(4.6) ν
dy

dx
=
ay2 − λxy − νx2

y2 − x2
,

where we put a = 2−λ+ ν = 3ν/2+2/3. By letting v = y/x, from (4.6) we obtain

(4.7) νx
dv

dx
= − g(v)

v2 − 1
,

where we denote

(4.8) g(v) = νv3 − av2 + (λ− ν)v + ν.

We decompose g(v) as follows:

(4.9)
g(v) = (v − 2){νv2 + (

ν

2
− 2

3
)v − ν

2
}

= ν(v − 2)(v − α)(v − β),

where we put

(4.10) α, β =
1

2
{−(

1

2
− 2

3ν
)±

√
(
1

2
− 2

3ν
)2 + 2}

with α < 0 and α < β. Since ν ̸= 8/27, the polynomial g(v) has distinct three roots
2, α and β.
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We consider two cases as follows.

Case 1. Suppose that dv/dx = 0 on an interval (0, ϵ) for some ϵ > 0.

Then v is constant and hence it follows from Lemma 2.3 that v = 2. As in the
proof of Case 1 in Section 3, we may prove that at the point P the curve X satisfies
(1.1) for sufficiently small h > 0.

Case 2. Suppose that dv/dx ̸= 0.

Note that the polynomial g(v) has distinct three roots 2, α and β. The differ-
ential equation (4.7) becomes

(4.11)
1

x
dx+

v2 − 1

(v − 2)(v − α)(v − β)
dv = 0.

Or equivalently, we get

(4.12)
1

x
dx+ { γ

(v − α)
+

δ

(v − β)
+

η

v − 2
}dv = 0,

where we put

(4.13) γ =
α2 − 1

(α− β)(α− 2)
, δ =

β2 − 1

(β − α)(β − 2)

and

(4.14) η =
3

(α− 2)(β − 2)
.

Integrating (4.12) yields

(4.15) x|v − α|γ |v − β|δ|v − 2|η = C,

where C is a constant of integration. It follows from ν < 0 or ν > 8/27 that η > 0.
Hence, by letting x→ 0, the left hand side of (4.15) goes to zero, which implies that
C is zero and hence v = 2. This contradiction shows that this case cannot occur.

Combining Cases 1 and 2 shows that at the point P ∈ X for sufficiently small
h > 0 the curve X satisfies

SP (h) =
4

3
TP (h).

Since P ∈ X was arbitrary, Proposition 1.2 completes the proof of Theorem 1.5.
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