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A POINTED BLASCHKE
MANIFOLD IN EUCLIDEAN SPACE

YouNGg Ho Kim

1. Introduction

Submanifolds of Euclidean spaces have been studied by examining
geodesics of the submanifolds viewed as curves of the ambient Eu-
clidean spaces ([3], [7], [8], [9]). K.Sakamoto ([7]) studied submani-
folds of Euclidean space whose geodesics are plane curves, which were
called submanifolds with planar geodesics. And he completely classi-
fied such submanifolds as either Blaschke manifolds or totally geodesic
submanifolds. We now ask the following: If there is a point p of the
given submanifold in Euclidean space such that every geodesic of the
submanifold passing through p is a plane curve, how much can we say
about the submanifold ?

In the present paper, we study submanifolds of Euclidean space with
such property.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically im-
mersed in a Euclidean m-space E™ by an immersion z. Then the
metric tensor on M is naturally induced from that of E™. We use the
same notation {,) for the metrics unless stated otherwise. Let V and
V be the Levi-Civita connections on M and E™ respectively. Then,
we have the so-called Gauss equation VY == VxV + h{(X,Y), where
X and Y denote vector fields on M and h is the second fundamental
form.

The equation of Weingarten is given by Vx € = —Ae¢ X +V %€, where
Ag is the Weingarten map associated with a normal vector field £ to
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M and V1 the normal connection in the normal bundle T1M. As is
well known, the Weingarten map A and the second fundamental form
h are related by < A;X,Y >=< h(X,Y),£ > for all vector fields X
and Y on M and £ normal to M. We now define the van der Waerden-
Bortolotti covariant derivative of h as

for all vector fields X, ¥ and Z on M. We denote (Vxh)(Y,Z) by

(VR)(X,Y, Z) which is a tensor field of type (1,3). Let R be the cur-
vature tensor of M. The Gauss equation is given by

< R(X,Y)YZ,W > (1.1)
=< MX,W)KY,Z)> - < h(Y,W),MX,Z) >.
We also obtain the Codazzi equation
(VRYX,Y,Z) - (Vh)Y,X,Z) = 0. (1.2)

The submanifold M in Euclidean space E™ is said to be isotropic
at p € M if the normal curvature of curves passing through p is inde-
pendent of the choice of the curve, that is, < h(t,t), h(t,t) > does not
depend on the choice of the unit vector ¢ tangent to M at p. By B.
O'Neill (8], M is isotropic at p if and only if < h(t,t), h(t,t+) >= 0 for
all unit vectors ¢t and t+ perpendicular to t.

For a point p € M and a unit vector t tangent to M at p, the
vector ¢t and the normal space TPJ'M' of M at p form an (m —n + 1)-
dimensional affine space E(p;t) in E™ through p. The intersection of
M with E(p;t) gives rise to a curve in a neighborhood of p which is
called the normal section at p in the direction t (See [3], [5]).

Let M be a complete Riemannian manifold and let p and ¢ be points

of M. The link A(p, ¢) from p to g is defined as

A(p,q) = {7'(q) € UyM|y € Seg(p, q)},

where v is assumed to be parametrized by one length, Seg(p, ¢) denotes
the set of minimal geodesics joining p to ¢ and UM is the unit tan-
gent space of M at ¢. A compact Riemannian manifold M is called a
Blaschke manifold at p if for every ¢ in Cut(p) the link A(p, ¢) is a great
sphere of Uy M, where Cut(p) denotes the cut locus of p. The manifold
M 1s said to be a Blaschke manifold if it is a Blaschke manifold at
every point of M.
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3. Submanifolds of Euclidean space with planar geodesics
through a point

Let M be an n-dimensional submanifold of an m-dimensional Eu-
clidean space E™ by an isometric immersion ¢ : M — E™.
We prove

LEMMA 1. Let M be an n-dimensional submanifold of a Euclidean
space E™. If v is a planar geodesic of M, then ~ is a normal section
of M along .

Proof. We may assume that v is parametrized by the arc length
s. Let 4'(s) = T. Then, v"(s) = AT, T) and v"'(s) = —ApcrnT +
(VA)YT,T,T). Since v is planar, v'(s) A v"'(s) A ¥""(s) = 0 along 7.
Thus, we have

T A AT AR(T,T) =T AT, T)A(VRNT, T, T)=0. (3.1)

Suppose T A Ap(rmyT # 0 at y(so) for some sy € Domy where Dom~y
denotes the domain of 4. Then, there exists an open interval I such
that so € I C Domy and T A Ay yT # 0 at y(s) for all s € I. We
can choose vector fields X3, X4, - X, tangent to M for every s € I.
Taking the exterior product of App T AX3 A - AX, with (3.1), we
obtain

TAAwryTAXs A ANXy AT, TYN(VRYT, T, T) =0,

from which,

R(T, TYAN(VAT, T, T) =0
at ~(s) for every s € I. Therefore, (3.1) gives
TAAperyT AT, T) =0.
Since T A AprmyT # 0for s € I, W(T,T) = 0 at y(s) for every s € I,

which is a contradiction. Consequently, we have
TAApermT =0and W(T.T)AN(VR) T, T,T) =0 (3.2)

along v. The curve v lies in y(s) + Sp{T(s),(T(s),T(s))} for each
fixed s. The uniqueness theorem of geodesic implies that 4 is a normal
section of M in the direction 4/(s) along v. [}
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We now define

(x) : There is a point o in M such that every geodesic through o is
planar.

We now suppose that M admits (). Without loss of generality we
may assume that the point o is the origin of E™. Let v be a geodesic
of M passing through o and let v be parametrized by the are length s.
Let v(0) = 0. As in Lemma 3.1, we have

Y(s) =T, v"(s) = KT, T), v"(s) = —Apr,nT + (VRYT, T, T).

Since 7 is a normal section of M at o, by Lemma 3.1, Apapt At =0,
where t = T(0). In other words,

< h(t,t), h(t, t+) >=0,

where ¢+ is a unit vector tangent to M at o perpendicular to ¢, which
implies that M is isotropic at o. Thus we have

PROPOSITION 2. Let M be a submanifold of E™ with (*). Then M
is isotropic at o.

Since every geodesic through o is a plane curve, we may represent
the immersion z : M — E™ locally on a neighborhood U of o in
terms of geodesic polar coordinates (s,8y,60y--- ,6,_1) as

1'(3761"” ,971—1) :»h(S,g],“ ) ,971_1)6(91,"' 1911—1) (3°3)
+k(3501a"' 76n—1)N(617"' ’911—1)a

where e(6;1,---,60,_1) is a unit tangent vector to M at o, h and k
functions satisfying h(0,61, -+ ,8,_1) = k(0,61,--+ ,8,_1) = o0 and
N(6,,--+,0,_1) a unit vector normal to M at o depending on 6;,- -,
0,_1. Then, it is obvious that a%'_e(ﬂl, -+ ,8,-1) is tangent to M and
5% N(6y,--- ,0n_1) normal to M at oforall i = 1,2,--- ,.n— 1. We
then have orthogonal vector fields tangent to M defined on U :

0 o}
—0:) :"5:3(3’91" o »611—1 )6(6],' . 7911—-1) (34)

ok
+ 5‘:(8,91, s ,gn—l)N(el,"' ,0n_1),

T
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0

Oh
8_9) 2557(8791,"' yOn_1)e(61, - ,6n_1) (3.5)

T

Jde
+ h(s, 6y, ,9n—1)5"0j(91,"' y0n_1)

ok
+ 5&:(57917'“ 79n—1)]v(617"' 7971—1)

ON
+k(5761~"' 7971-1)59—'(917"' 7971‘—1)

fort=1,2,--- ,n—1, where 3:*(-563)(0,61,--- 1) =e€(b1,--- ,6,_1).
Since < x*(a%)vx*(a%) >=1 for each (5,01, -+ ,8,_1),

2 2
dh ok

from which, we may put

oh

59‘(3791,"' ,gn_l):COSf(S,gl,"‘ 7971—1)» (37)
ok )

5(5,6’1, ) =sinf(s, 0y, 60,0), (3.8)

where f(s,61, - ,0,_1) is a smooth function satisfying f(0,6;, -,
gn—l) = 0 fOI‘ all 91,~ . ,9,1_1.
From (3.4), we have

- 0 O*h
Vel g) =ae(®, ) (3.9)
Ok
+ 2 N6y, ,6n_1)
which is normal to M since z(s,8;,--- ,0n_1) is a geodesic for each

61, 6n_1.
We now prove

LEMMA 3. Let M be a submanifold of Euclidean space satisfying
(x). Then the curvature of all the geodesic passing through o Is inde-
pendent of the choice of geodesics.

Proof. Let ¥ be a geodesic passing through o. Then y(s) = z(s, 64,
*y0n_1) for some 61,--- .8, ;. The curvature « of v is given by

(k(s,61,---,6n_1))" =< H(T.T),h(T,T) >,
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where 7'(s) = T. We compute

lx(

J
20 )(K(s1,01, - 0n1))’
<v8L h T7 T)sh(TsT))

=((T) (g T T AT, D) + 2{(V 1 T,T), T, T))

—(VR)(T, a(; T), (T, T)) + 2(h(V ;5 T, T), (T, T))
=((VA)(T. 557 T), A(T,T) (becanse of (3.2)
=T{h(oe, T), H(T, T)) = (WY1, T), AT, T))
~ (b T, (VAT T,T)

— ((VR)(T,T,T), h(aaa T)) (because of (3.2))

foralli=1,2,--- ,n— 1. Suppose that < (VR)(T, T,T),h(g%._-,T) >
0 for some sg € Dom ~. Then, (VRYT,T,T) # 0 and h(—E,%?,T) #0
at (so,61, - ,9,,,_1). Thus, (VR)(T,T,T) # 0 and h(g%;,T) # 0 for
all (5,61, -+ ,68,-1), where s belongs to some open interval J con-
tained in Dom 7. Since 7'(s) A v"(s) A ¥"'(s) = 0 along v, we see
that A(T.T) A (VR)(T,T,T) = 0. It follows that W(T,T) = 0 at
(s,0y, - ,Hn_l) for every s € J, which i1s a contradiction. There-
fore, x*(aie,-) (k(s,81,--- ,9,1_1))2 =0foralli=1,--- ,n—1and all s
in Dom <. This completes the proof. [

LEMMA 4. The functions h(s,61, - ,6,_1) and k(s,61, - ,8n-1)
depend only on s.

Proof. Taking account of (3.4), (3.7), (3.8) and (3.9), we have

(h:(s7 911 e 1971—-1))2 = (%)2»

from which,

= 5/{(3’913' t 3011—-1)1 €= :t]-
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According to Lemma 3, %5(6,91,“- ,0n_1) depends only on s. Since
f(0,61,-- ,6n_1) =0, we may put

f(S, 9], Tty en—l) - ¢(5)

Thus, we have

h(s,801,- - . Ophy) = / cosP(t)dt,
0

k(s,81, - .0,_1) :/ sind(t)dt
0

because of h(0,6:,--- ,60,-1) = k(0,61,--- ,0,_1) = 0. The proof is
completed. [

THEOREM 5. Let M be an n-dimensional complete submanifold of
Fuclidean space E™ satisfying (*#). Then M is a pointed Blaschke
manifold or has no cut point for all geodesics through o.

Proof. From Lemma 3 and 4 we obtain
x(s,01,--+ On1) = N(s)e(Br, - ,0h_1)+ k(s)N(01, - ,0,1).

If a geodesic passing through o has a cut point, then the cut locus
Cut(o) is spherical, that is, the cut value is independent of the choice
of the geodesics passing through o. According to [1], pp.138, M is a
Blaschke manifold at 0. [

COROLLARY 6([9]). Let M be an n-dimensional complete subman-
ifold of Euclidean space E™ with planar geodesics. Then, M is a
(compact) Blaschke manifold or an n-plane E".
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