• Title/Summary/Keyword: plane curvature

Search Result 236, Processing Time 0.024 seconds

AREA OF TRIANGLES ASSOCIATED WITH A STRICTLY LOCALLY CONVEX CURVE

  • Kim, Dong-Soo;Kim, Dong Seo;Bae, Hyun Seon;Kim, Hye-Jung
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.41-52
    • /
    • 2015
  • It is well known that the area U of the triangle formed by three tangents to a parabola X is half of the area T of the triangle formed by joining their points of contact. Recently, it was proved that this property is a characteristic one of parabolas. That is, among strictly locally convex $C^{(3)}$ curves in the plane $\mathbb{R}^2$ parabolas are the only ones satisfying the above area property. In this article, we study strictly locally convex curves in the plane $\mathbb{R}^2$. As a result, generalizing the above mentioned characterization theorem for parabolas we present some conditions which are necessary and sufficient for a strictly locally convex $C^{(3)}$ curve in the plane to be an open part of a parabola.

Effect of Initial Uniform Moment on Lateral Free Vibration of Arches (등분포 모멘트를 받는 아치의 횡 자유진동)

  • 염응준;한택희;임남형;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.3-10
    • /
    • 2002
  • Recently, arches are used structurally because of their high in-plane stiffness and strength, which result from their ability to transmit most of the applied loading by axial forces actions, so that the bending actions are reduced. On the other hand, the resistances of arches to (out-of-plane,) flexural-torsional behavior depend on the rigidities EI/sub y/, for lateral bending, GJ for Uniform torsion, and EI/sub w/ for warping torsion which are related to axial stress for flexural-torsional behavior. The resistance of an arch to out-of-plane behavior may be reduced by its in-plane curvature, and so it may require significant lateral bracing. Thus. it is supposed that In-plane preloading which cause an axial stress, have an effect on out-of-plane free vibration behavior of arches. Because axial stresses caused increase or decrease out-of-plane stiffness. But study about this substance is insufficient. In this thesis, We will study an effect of preloading on lateral free vibration of arches, using finite element method based on Kang and Yoo's curved beam theory (about curved beam element have 7 degree of freedom including warping) with FORTRAN programming.

  • PDF

Changes of Muscle Activity and Cephalometric Variables Related to Head Posture (두부자세에 따른 근활성과 측모두부방사선계측치의 변화에 관한 연구)

  • Kim, Byung-Wook;Han, Kyung-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.2
    • /
    • pp.189-206
    • /
    • 1999
  • This study was performed to investigate the factors affecting muscle activity and cephalometric variables according to change of head postures. For this study, 150 patients with temporomandibular disorders and 80 dental students without any signs and symptoms of temporomandibular disorders were selected as the patients group and as the normal group, respectively. Head position to body-midline in frontal plane and upper quarter posture to body plumb line in sagittal plane were observed clinically and electromyographic(EMG) activity of anterior temporalis, masseter, sternocleidomastoideus, and trapezius on clenching were recorded with $BioEMG^{(R)}$ in four head postures, which were natural head posture(NHP), forward head posture(FHP), $20^{\circ}$ upward head posture(UHP), and $20^{\circ}$ downward head posture(DHP). Cephaloradiographs were also taken in the same head postures as in EMG taking, but that was taken only in NHP for the patient group. Cephalometric variables measured were SN angle, CVT angle, atlas inclination angle, occlusal plane angle, Me-C2 angle, pharyngeal width, occiput~axis distance, area of pharyngeal space, and cervical curvature. The data were analyzed by SAS statistical program. The results of this study were as follows : 1. Between the patient and the normal group, there were significant difference in distance from plumb line to acromion, eye-tragus angle, electromyographic activity of the four muscles, and cephalometric variables of linear measurement. 2. There was no consistent pattern of correlation between upper quarter posture, EMG activity and cephalometric variables in any case without relation to cervical curvature and head position in frontal plane. 3. Sternocleidomastoid muscle only showed variation of electromyographic activty with changes of head postures, but all the muscles did show correlation with head postures. 4. All the cephalometric variables measured in this study showed difference of mean value by head posture, and CVT angle, pharyngeal width, occiput-atlas distance, and area of pharyngeal space showed correlation between these variables with change from NHP to FHP, and from NHP to UHP.

  • PDF

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects

  • Becheri, Tawfiq;Amara, Khaled;Bouazza, Mokhtar;Benseddiq, Noureddine
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1347-1368
    • /
    • 2016
  • In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature effects is presented. The equilibrium equations are derived according to the refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in the literature.

Prediction of Curvature Effects on the Electromagnetic Flowmeter Characteristics with Numerical Simulation (Laminar flow) (곡관의 곡률에 따른 전자기유량계 설치효과의 수치모사에 의한 특성 예측(충류))

  • Lim, Ki Won;Choi, Sang Kyu;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1453-1463
    • /
    • 1999
  • An electromagnetic flowmeter, based on a magnetic induction principle; provides an obstructionless flowmeter that essentially averages the velocity distribution over the pipe cross-sectional area. To predict the installation effects, the flowmeter installed near $90^{\circ}$ elbow is simulated by using a commercial code FLUENT(ver. 4.48) for the laminar flow field and a code developed through this study for magnetic field. The installation effects of the flowmeter are estimated by varying a number of the dependent parameters such as the radius of the elbow(Rc=1D, 1.5D, 2D, 3D), the location, Reynolds number and the direction of electrodes plane(${\varphi}$). It was found that all these factors affect the performance of the electromagnetic flowmeter significantly. The longer installation distance from the elbow is not always optimal to minimize the error, and also there exists an optimal location to install the EMF for a minimum error. Especially the flow signal with the electrodes plane direction of ${\varphi}=45^{\circ}$ is shown to yield smallest measurement error regardless of the Reynolds number and the curvature of elbow.

Effects of Secondary Flow on the Turbulence Structure of a Flat Plate Wake (2차유동이 평판후류의 난류구조에 미치는 영향)

  • Kim, Hyeong Soo;Lee, Joon Sik;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1073-1084
    • /
    • 1999
  • The effects of secondary flow on the structure of a turbulent wake generated by a flat plate was investigated experimentally. The secondary flow was induced In a $90^{\circ}$ curved duct in which the flat plate wake generator was installed. The wake generator was installed in such a way that the wake velocity gradient exists in the span wise direction of the curved duct. Measurements were made in the plane containing the mean radius of curvature where pressure gradient and curvature effects were small compared with the secondary flow effect. All six components of the Reynolds stresses were measured in the curved duct. Turbulence intensities in the curved wake are higher than those in the straight wake due to an increase of the turbulent kinetic energy production by the secondary flow. In the inner wake region, shear stress and strain in the plane containing the velocity gradient of the wake show opposite signs with respect to each other, so that eddy viscosity Is negative in this region. This indicates that gradient-diffusion type turbulence models are not appropriate to simulate this type of flow.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature (CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성)

  • Cho Young Jea;Kim Young Nam;Yang In Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

Alteration of the Static Posture of Spine under Different Types and Amounts of Loading (가방 하중의 크기와 방식에 따른 척추 정적 자세의 변화)

  • Park, Yong-Hyun;Kim, Young-Kwan;Kim, Yoon-Hyuk
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.230-236
    • /
    • 2011
  • The aim of this study was to investigate the alteration of lumbar spine and trunk postures on different load-carrying types and amounts under static loading. Two load-carrying types(unilateral carrying: UC vs. bilateral carrying: BC) and four different loads(0, 5, 10, and 15 kg) were randomly tested in this study. Carrying a heavy bag would affect human body posture, specifically lumbar spine curvature, which is considered as one of sources of back problems. Previous studies have not paid attention to the approach of the multisegment model of the lumbar spine and trunk. This study separated two compartments of trunk segment(the lumbar and thorax) in the analysis. The multisegment model of the lumbar spine in addition to Helen-Hayes marker set was used. Eight motion analysis cameras and a force plate were utilized. Ten male subjects(mean mass, $70.6{\pm}3.97$ kg; mean height, $178{\pm}4.18$ m) having no musculoskeletal disease participated in this study. We analyzed trunk angles in three anatomical planes and the spinal curvature in sagittal and frontal planes. Increased loading in both UC and BC significantly resulted in increases in trunk forward lean but only UC induced increases in trunk lateral lean. In addition, increased loading in BC produced flatten lumbar curvature in sagittal plane. As far as coupling motion, subjects tended to use axial rotation of the lumbar spine in transverse plane in response to increased UC loading. Finally, it is concluded that the increased static loading in UC rather than in BC tends to causes combined alterations of the spinal postures(sagittal and transverse planes together), which would be vulnerable to improper mechanical stresses on the spine.