DOI QR코드

DOI QR Code

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects

  • Becheri, Tawfiq (Department of Civil Engineering, University of Bechar) ;
  • Amara, Khaled (Department of Civil Engineering, University centre of Ain Temouchent) ;
  • Bouazza, Mokhtar (Department of Civil Engineering, University of Bechar) ;
  • Benseddiq, Noureddine (Mechanics Laboratory of Lille, CNRS UMR 8107, University of Lille 1)
  • Received : 2016.03.27
  • Accepted : 2016.08.20
  • Published : 2016.08.30

Abstract

In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature effects is presented. The equilibrium equations are derived according to the refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in the literature.

Keywords

References

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  5. Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5, 69-77.
  6. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  7. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
  8. Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
  9. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  10. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  11. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  12. Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates", J. Appl. Mech., 51(1), 195-198. https://doi.org/10.1115/1.3167569
  13. Bouazza, M. and Benseddiq, N. (2015), "Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings", Multidiscipl. Model. Mater. Struct., 11(4), 558-578. https://doi.org/10.1108/MMMS-02-2015-0008
  14. Bouazza, M., Lairedj, A. Benseddiq, N. and Khalki, S. (2016), "A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates", Mech. Res. Commun., 73, 117-126. https://doi.org/10.1016/j.mechrescom.2016.02.015
  15. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  16. Boukhari, A., Ait Atmane, H., Tounsi, A. and Samy, H. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  17. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  18. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  19. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  20. Chikh, A., Bakora, A., Heirache, H. and Adda Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory ", Struct. Eng. Mech., Int. J., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617
  21. Dawe, D.J. and Roufaeil, O.L. (1982), "Buckling of rectangular Mindlin plates", Comput. Struct., 15(4), 461-471. https://doi.org/10.1016/0045-7949(82)90081-5
  22. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  23. Fares, M.E. and Zenkour, A.M. (1999), "Buckling and free vibration of nonhomogeneous composite crossply laminated plates with various plate theories", Compos. Struct., 44(4), 279-287. https://doi.org/10.1016/S0263-8223(98)00135-4
  24. Ferreira, A.J.M. (2005a), "Analysis of composite plates using a layerwise deformation theory and multiquadrics discretization", Mech. Adv. Mater. Struct., 12(2), 99-112. https://doi.org/10.1080/15376490490493952
  25. Ferreira, A.J.M. (2005b), "Free vibration analysis of Timoshenko beams and Mindlin plates by radial basis functions", Int. J. Comput. Meth., 2(1), 15-31. https://doi.org/10.1142/S0219876205000314
  26. Ferreira, A.J.M. and Fasshauer, G.E. (2006), "Computation of natural frequencies of shear deformable beams and plates by a RBF-pseudospectral method", Comput. Meth. Appl. Mech. Eng., 196(1-3), 134-146. https://doi.org/10.1016/j.cma.2006.02.009
  27. Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2003), "Analysis of composite plates using higherorder shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. Part B, 34(7), 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
  28. Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2004), "Radial basis functions and higher order theories in the analysis of laminated composite beams and plates", Compos. Struct., 66(1-4), 287-293. https://doi.org/10.1016/j.compstruct.2004.04.050
  29. Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4265-4278. https://doi.org/10.1016/j.cma.2004.11.004
  30. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  31. Hanna, N.F. and Leissa, A.W. (1994), "A higher order shear deformation theory for the vibration of thick plates", J. Sound Vib., 170(4), 545-555. https://doi.org/10.1006/jsvi.1994.1083
  32. Hassaine Daouadji, T., Hadj Henni, A., Tounsi, A. and Adda Bedia, E.A. (2012), "A new hyperbolic shear deformation theory for bending analysis of functionally graded plates", Model. Simul. Eng., Article ID 159806, 10 p.
  33. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  34. Jones, R.M. (1975), Mechanics of Composite Materials, Hemisphere Publishing Corporation.
  35. Kant, T. (1982), "Numerical analysis of thick plates", Comput. Methods Appl. Mech. Eng., 31(1), 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
  36. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  37. Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. Part II-buckling and free vibration", Compos. Struct., 9(4), 259-277. https://doi.org/10.1016/0263-8223(88)90048-7
  38. Kim, S.E., Thai, H.T. and Lee, J. (2009), "Buckling analysis of plates using the two variable refined plate theory", Thin-Wall. Struct., 47(4), 455-462. https://doi.org/10.1016/j.tws.2008.08.002
  39. Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., Int. J., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021
  40. Leissa, A.W. and Ayoub, E.F. (1988), "Vibration and buckling of simply supported rectangular plate subjected to a pair of in-plane concentrated forces", J. Sound Vib., 127(1), 155-171. https://doi.org/10.1016/0022-460X(88)90356-2
  41. Liew, K.M., Xiang, Y. and Kitipornchai, S. (1996), "Navier's solution for laminated plate buckling with prebuckling in-plane deformation", Int. J. Solid. Struct., 33(13), 1921-1937. https://doi.org/10.1016/0020-7683(95)00130-1
  42. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation. Part 1:Homogeneous plates", J. Appl. Mech., 44(4), 663-668. https://doi.org/10.1115/1.3424154
  43. Madenci, E. and Guven, I. (2007), The Finite Element Method and Applications in Engineering Using Ansys, Springer.
  44. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  45. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B, 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
  46. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38.
  47. Nakasone, Y., Yoshimoto, S. and Stolarski, T.A. (2006), Engineering Analysis with ANSYS Software, Elsevier Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, Burlington, MA 01803.
  48. Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93(12), 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028
  49. Piscopo, V. (2010), "Refined buckling analysis of rectangular plates under uniaxial and biaxial compression", World Academy of Science; Eng. Technol., 46, 554-561.
  50. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  51. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, CA, USA.
  52. Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
  53. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-77.
  54. Senthilnathan, N.R., Chow, S.T., Lee, K.H. and Lim, S.P. (1987), "Buckling of shear-deformable plates", AIAA J., 25(9), 1268-1271. https://doi.org/10.2514/3.48742
  55. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146. https://doi.org/10.2514/2.1622
  56. Shimpi, R.P. and Patel, H.G. (2006a), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(22-23), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
  57. Shimpi, R.P. and Patel, H.G. (2006b), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4-5), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030
  58. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-200. https://doi.org/10.1007/BF01176650
  59. Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25(1-4), 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
  60. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  61. Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062
  62. Thai, H.T. and Kim, S.E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52, 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002
  63. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  64. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  65. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
  66. Whitney, J.M. (1987), "Curvature effects in the buckling of symmetrically-laminated rectangular plates with transverse shear deformation", Compos. Struct., 8(2), 85-103. https://doi.org/10.1016/0263-8223(87)90006-7
  67. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", Trans. ASME, J. App. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
  68. Whitney, J.M. and Sun, C.T. (1973), "A higher order theory for extensional motion of laminated composites", J. Sound Vib., 30(1), 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5
  69. Wu, Z. and Chen, W. (2007), "Thermomechanical buckling of laminated composite and sandwich plates using global-local higher order theory", Int. J. Mech. Sci., 49(6), 712-721. https://doi.org/10.1016/j.ijmecsci.2006.10.006
  70. Xiang, S. and Kang, G.W. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech. A/Solid, 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005
  71. Xiang, S. and Wang, K.M. (2009), "Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric RBF", Thin-Wall. Struct., 47(3), 304-310. https://doi.org/10.1016/j.tws.2008.07.007
  72. Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011a), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022
  73. Xiang, S., Jiang, S.X., Bi, Z.Y., Jin, Y.X. and Yang, M.S. (2011b), "A nth-order meshless generalization of Reddy's third-order shear deformation theory for the free vibration on laminated composite plates", Compos. Struct., 93(2), 299-307. https://doi.org/10.1016/j.compstruct.2010.09.015
  74. Xiang, S., Kang, G.W. and Xing, B. (2012), "A nth-order shear deformation theory for the free vibration analysis on the isotropic plates", Meccanica, 47(8), 1913-1921. https://doi.org/10.1007/s11012-012-9563-0
  75. Xiang, S., Kang, G.W., Yang, M.S. and Zhao, Y. (2013), "Natural frequencies of sandwich plate with functionally graded face and homogeneous core", Compos. Struct., 96, 226-231. https://doi.org/10.1016/j.compstruct.2012.09.003
  76. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  77. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.041
  2. Compressive buckling analysis of orthotropic composite plates restrained by stringers vol.1074, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1074/1/012073
  3. Shear buckling analysis of laminated plates on tensionless elastic foundations vol.24, pp.6, 2016, https://doi.org/10.12989/scs.2017.24.6.697
  4. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
  5. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.369
  6. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2016, https://doi.org/10.12989/sem.2017.64.2.145
  7. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
  8. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  9. Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.393
  10. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
  11. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
  12. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.711
  13. Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.785
  14. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2016, https://doi.org/10.12989/anr.2019.7.3.191
  15. Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory vol.33, pp.2, 2016, https://doi.org/10.12989/scs.2019.33.2.245
  16. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.371
  17. Elastic buckling strength for steel plates symmetrically strengthened with glass fiber reinforced polymer plates vol.47, pp.3, 2016, https://doi.org/10.1139/cjce-2018-0476
  18. Experimental and numerical investigation of stiffener effects on buckling strength of composite laminates with circular cutout vol.54, pp.9, 2020, https://doi.org/10.1177/0021998319874101
  19. Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.083
  20. Modeling of memory-dependent derivative in a functionally graded plate vol.31, pp.4, 2016, https://doi.org/10.1080/17455030.2019.1606962