• Title/Summary/Keyword: pinhole

Search Result 208, Processing Time 0.028 seconds

The Measurement of The Inclined Pinhole in The Cold Strip (극박 냉연강판의 경사진 핀홀 검출에 관한 연구)

  • 김하술;배호문;이희준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.201-207
    • /
    • 1999
  • The automatic pinhole detection system is described. The goal of this project is to study the feasibility test of the new concept for hole detection. The developed method is able to detect almost 50$\mu\textrm{m}$ pinhole by evaluating the shining of the light as if there is pinhole in the strip. Moreover, it is possible to inspect up to the 200$\mu\textrm{m}$ inclined pinhole. The system cosists of three main functional parts: the source part of the light which is using the linear halogen lamp, the image gathering part which is using a line CCD and the image processing part. The light spot can be controlled and optimized corresponding to the situation of the strip. To eliminate back ground noise, the binary image processing method is adopted.

  • PDF

Spatial resolution and natural image quality assessment evaluation of gamma camera image using pinhole collimator in lutetium-yttrium oxyorthosilicate scintillation detector

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2567-2571
    • /
    • 2023
  • Scintillator materials are widely used in the medical and industrial fields for imaging systems using gamma cameras. In this study, image evaluation is performed by modeling a gamma camera system based on a lutetium-yttrium oxyorthosilicate (LYSO) scintillation detector using a pinhole collimator that can improve the spatial resolution. A LYSO detector-based gamma camera system is modeled using a Monte Carlo simulation tool. The geometric concept of the pinhole collimator is designed using various magnification factors, and the spatial resolution is measured using the acquired source image. To evaluate the resolution, the full width at half maximum (FWHM) and natural image quality assessment (NIQE), a no-reference-based parameter, are used. We confirm that the FWHM and NIQE values decrease simultaneously when the diameter of the pinhole collimator increases. Additionally, we confirm that the spatial resolution improves as the magnification factor increases under the same pinhole diameter condition. Particularly, a 0.57 mm FWHM value is obtained using the modeled gamma camera system with a LYSO scintillation detector. In conclusion, our results demonstrate that a pinhole collimator with a LYSO scintillation detector is a promising gamma camera imaging system.

Image Detecting System for Pinhole with Photoelectric Sensors (광전(光電)센서를 활용한 핀홀의 영상검출시스템)

  • Kang, Min-Goo;Zo, Moon-Shin;Jeon, Jong-Suh
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.17-22
    • /
    • 2012
  • In this paper, a photoelectric image detection system is proposed using an APD(Avalanche Photodiode) sensor, a LED illuminator, and fiberoptic waveguides. This proposed pinhole detection system can detect the pinholes of 100 micron with the speed rate of 1,000mpm(meter per minute). And detecting performance of image system is improved by the SQL based DB analysis of classifying pinhole's detected location and size using image detection algorithms.

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing of Planetary Gear (캐리어의 핀홀 위치 오차가 유성기어의 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.67-72
    • /
    • 2016
  • Planetary gear sets are widely used in power transmission components, which have high efficiency and good durability. Their most important design parameter is the load-sharing characteristics among several planetary gears. In this study, the load sharing of planetary gears was analyzed according to the carrier pinhole position error of planetary gear sets. The loads acting on planetary gears varied with the pinhole position error of the carrier, and the load sharing of planetary gears improved as the input load increased. In addition, the load of the planetary gear with a carrier pinhole position error was relatively higher than that of other planetary gears without carrier pinhole position errors. This trend appeared more clearly in the non-floating-type carrier than the floating-type carrier.

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing and Load Distribution of a Planet Gear (캐리어의 핀홀 위치 오차에 따른 유성기어의 하중 분할 및 하중 분포 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Young-Joo;Oh, Joo-Young;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.66-72
    • /
    • 2016
  • Gearboxes are mechanical components that transmit power by adjusting input and output speed and torque. Their design requirements include small size, light weight, and long lifespan. We have investigated the effects of carrier pinhole position error on the load sharing and load distribution characteristics of a planetary gear set with four planet gears. The simulation model for a simple planetary gear set was developed and verified by comparing analytical results with a putative model. Then, we derived the load sharing and load distribution characteristics under various pinhole position error conditions using the prototypical simulation model. The results showed that the mesh load factor and face load factor increased with the pinhole position error, which then influenced the safety factor for tooth bending strength and surface durability.

Characteristic Analysis of Planetary Gear Set of Hydromechanical Transmission System of Agricultural Tractors

  • Park, Young-Jun;Kim, Jeong-Gil;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.145-152
    • /
    • 2016
  • Purpose: This study aims to establish the effect of pinhole position errors in the planet carrier of a planetary gear set (PGS) on load sharing among the planet gears in the hydromechanical transmission (HMT) system of an agricultural tractor. Methods: A simulation model of a PGS with five planet gears was developed to analyze load sharing among the planet gears. The simulation model was verified by comparing i ts r esults w ith those of a model developed in a previous s tudy. The verified simulation model was used to analyze the load-sharing characteristics of the planet gears with respect to the pinhole position error and the input torque to the PGS. Results: Both simulation models had identical load magnitude sequences for the five planet gears. However, the load magnitudes on the corresponding planet gears differed between the models because of the different stiffnesses of the PGS components and the input torques to the PGS. The verified simulation model demonstrated that the evenness of load sharing among the planet gears increases with decreasing pinhole position error and increasing input torque. Conclusions: The geometrical tolerance of the pinhole position should be properly considered during the design of the planet carrier to improve the service life of the PGS and load sharing among the planet gears.

Whether Pinhole Scan or Single Photon Emission Computed Tomography (SPECT) in the Diagnosis of Bone and Joint Diseases (골격계진단에 있어서 핀홀스캔의 우월성)

  • Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • Since the publication of the first bone scintiscans in 1962 three decades have elapsed. The bone scan has made great strides during this period, becoming one of the most commonly used nuclear imaging tests. In spite of the progress, however, the specificity of bone scan has remained relatively low. As the result it is a common practice to seek additional information from radiograph, CT scan and MR image, which is euphemistically termed as "image fusion or co-location." The basic reason is the inapplicability of the classical piecemeal analysis to interpreting planar and SPECT bone scans. Such analysis has its base on the observation of elemental features of morphology, which include the size, shape, contour, location, topography and internal architecture. The physiochemical profile may well also be included. Understandably, however, the miniatured images of the planar bone scan cannot provide these features in acceptable detail and the same holds true even with SPECT Images which are but sliced views of the reconstructed planar scans. Fortunately pinhole scanning has the capacity to portray both the morphological and chemical profiles of bone and joint diseases in greater detail through true magnification. The magnitude of pinhole scan resolution is practically comparable to that of radiography as far as gross anatomy is concerned. Thus, we feel strongly that pinhole scanning is a potential breakthrough of the long-lamented low specificity of bone scan. This presentation will discuss the fun-damentals, advantages and disadvantages and the most recent advances of pinhole scanning. It high-lights the actual clinical applications of pinhole scanning in relation to the diagnosis of infective and inflammatory diseases of bone and joint.

  • PDF

A Numerical Study of Different Types of Collimators for a High-Resolution Preclinical CdTe Pixelated Semiconductor SPECT System

  • Jeong, Hyun-Woo;Kim, Jong Seok;Bae, Se Young;Seo, Kanghyen;Kim, Seung Hun;Kang, Seong Hyeon;Shin, Dong Jin;Lee, Chang-Lae;Kim, Kyuseok;Lee, Youngjin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2016
  • In single-photon-emission computed tomography (SPECT) with a pixelated semiconductor detector (PSD), not only pinhole collimators but also parallel-hole collimators are often used in preclinical nuclear-medicine imaging systems. The purpose of this study was to evaluate and compare pinhole and parallel-hole collimators in a PSD. For that purpose, we paired a PID 350 (Ajat Oy Ltd., Finland) CdTe PSD with each of the four collimators most frequently used in preclinical nuclear medicine: (1) a pinhole collimator, and (2) low-energy high-resolution (LEHR), (3) low-energy general-purpose (LEGP), and (4) low-energy high-sensitivity (LEHS) parallel-hole collimators. The sensitivity and spatial resolution of each collimator was evaluated using a point source and a hot-rod phantom. The highest sensitivity was achieved using LEHS, followed by LEGP, LEHR, and pinhole. Also, at a source-to-collimator distance of 2 cm, the spatial resolution was 1.63, 2.05, 2.79, and 3.45 mm using pinhole, LEHR, LEGP, and LEHS, respectively. The reconstructed hot-rod phantom images showed that the pinhole collimator and the LEHR parallel-hole collimator give a fine spatial resolution for preclinical SPECT with PSD. In conclusion, we successfully compared different types of collimators for a preclinical pixelated semiconductor SPECT system.

The Usefulness of Diagnostic Scan Using Technetium-99m Pertechnetate Scintigraphy prior to the First Ablative Radioiodine Treatment in Patients with Well Differentiated Thyroid Carcinoma: A Comparative Study with Iodine-131 (분화된 갑상선암 수술 후 초치료에 있어서 Tc-99m Pertechnetate을 이용한 진단 스캔의 유용성: Iodine-131 스캔과의 비교)

  • Yoon, Seok-Nam;Park, Chan-H.;Hwang, Kyung-Hoon;Kim, Su-Zy;Soh, Eui-Young;Kim, Kyung-Rae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.285-293
    • /
    • 2000
  • Purpose: A prospective comparison was made between imaging with Tc-99m pertechnetate (Tc-99m) and Ioine-131 (I-131) for the detection of residual and metastatic tissue after total thyroidectomy in patients with well-differentiated thyroid carcinoma. Materials and Methods: Initially our patients had imaging with Tc-99m, followed by I-131 within 3 days. The study included 21 patients who had ablation with high dose of I-131 ranging from 100 mCi to 150 mCi. Planar and pinhole images were acquired for both Tc-99m and I-131. Diagnostic images of Tc-99m and I-131 were compared with post-therapy images. Degree of uptake on Tc-99m and I-131 images was scored by four point scale and compared. Results: The results of the Tc-99m study were: 16 of 19 studies (84%) were positive on simple planar images, but 19 of 20 studies (95%) were positive on pinhole images. Conventional I-131 diagnostic imaging on the other hand showed that all studies (100%) were positive on both planar and pinhole images. There was a significant difference in degree of uptake between Tc-99m and I-131 planar images (p<0.05). Only one case of Tc-99m scintigraphy was negative on both planar and pinhole studies (false negative). There was no distant metastasis on the therapeutic I-131 images. Conclusion: Tc-99m scan using pinhole in certain clinical situations is an alternative to the I-131 scan in detecting thyroid or lymph node metastasis prior to the first ablative treatment after thyroidectomy for well-differentiated thyroid carcinoma.

  • PDF