DOI QR코드

DOI QR Code

A Numerical Study of Different Types of Collimators for a High-Resolution Preclinical CdTe Pixelated Semiconductor SPECT System

  • Jeong, Hyun-Woo (Department of Biomedical Engineering and School of Medicine, Eulji University) ;
  • Kim, Jong Seok (Department of Radiological Science, Eulji University) ;
  • Bae, Se Young (Department of Radiological Science, Eulji University) ;
  • Seo, Kanghyen (Department of Radiological Science, Eulji University) ;
  • Kim, Seung Hun (Department of Radiological Science, Eulji University) ;
  • Kang, Seong Hyeon (Department of Radiological Science, Eulji University) ;
  • Shin, Dong Jin (Department of Radiological Science, Eulji University) ;
  • Lee, Chang-Lae (Department of Radiological Science, Yonsei University) ;
  • Kim, Kyuseok (Department of Radiological Science, Yonsei University) ;
  • Lee, Youngjin (Department of Radiological Science, Eulji University)
  • Received : 2016.09.30
  • Accepted : 2016.11.30
  • Published : 2016.12.25

Abstract

In single-photon-emission computed tomography (SPECT) with a pixelated semiconductor detector (PSD), not only pinhole collimators but also parallel-hole collimators are often used in preclinical nuclear-medicine imaging systems. The purpose of this study was to evaluate and compare pinhole and parallel-hole collimators in a PSD. For that purpose, we paired a PID 350 (Ajat Oy Ltd., Finland) CdTe PSD with each of the four collimators most frequently used in preclinical nuclear medicine: (1) a pinhole collimator, and (2) low-energy high-resolution (LEHR), (3) low-energy general-purpose (LEGP), and (4) low-energy high-sensitivity (LEHS) parallel-hole collimators. The sensitivity and spatial resolution of each collimator was evaluated using a point source and a hot-rod phantom. The highest sensitivity was achieved using LEHS, followed by LEGP, LEHR, and pinhole. Also, at a source-to-collimator distance of 2 cm, the spatial resolution was 1.63, 2.05, 2.79, and 3.45 mm using pinhole, LEHR, LEGP, and LEHS, respectively. The reconstructed hot-rod phantom images showed that the pinhole collimator and the LEHR parallel-hole collimator give a fine spatial resolution for preclinical SPECT with PSD. In conclusion, we successfully compared different types of collimators for a preclinical pixelated semiconductor SPECT system.

Keywords

References

  1. H. O. Anger, "Scintillation camera with multichannel collimators," J. Nucl. Ned. 5, 515-531 (1964).
  2. H. Wieczorek and A. Goedicke, "Analytical model for SPECT detector concepts," IEEE Trnas. Nucl. Sci. 53, 1102-1112 (2006). https://doi.org/10.1109/TNS.2006.874954
  3. C. Scheiber and G. C. Giakos, "Medical applications of CdTe and CdZnTe detectors," Nucl. Instrum. Meth. Phys. Res. 458, 12-25 (2001). https://doi.org/10.1016/S0168-9002(00)01032-9
  4. Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, "Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies," J. Kor. Phys. Soc. 62, 1317-1322 (2013). https://doi.org/10.3938/jkps.62.1317
  5. Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, "Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system," Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013). https://doi.org/10.1016/j.nima.2013.03.014
  6. T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, "Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging," Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004). https://doi.org/10.1016/j.nima.2004.03.046
  7. T. E. Peterson and L. R. Furenlid, "SPECT detectors: the Anger camera and beyond," Phys. Med. Biol. 56, R145-R182 (2011). https://doi.org/10.1088/0031-9155/56/17/R01
  8. S. C. Moore, K. Kouris, and I. Cullum, "Collimator design for single photon emission tomography," Eur. J. Nucl. Med. 19, 138-150 (1992).
  9. K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, "Ultra-high resolution SPECT system using four pinhole collimators for small animal studies," J. Nucl. Med. 36, 2282-2287 (1995).
  10. F. J. Beekman and B. Vastenhouw, "Design and simulation of a high-resolution stationary SPECT system for small animals," Phys. Med. Biol. 49, 4579-4592 (2004). https://doi.org/10.1088/0031-9155/49/19/009
  11. H. Iida and K. Ogawa, "Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study," Ann. Nucl. Med. 25, 143-150 (2011). https://doi.org/10.1007/s12149-010-0441-3
  12. R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, "Pinhole collimation for ultra-high-resolution, small-field- of-view SPECT," Phys. Med. Biol. 39, 425-437 (1994). https://doi.org/10.1088/0031-9155/39/3/010
  13. K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, "Ultra high resolution pinhole SPECT for small animal study," IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998). https://doi.org/10.1109/23.737674
  14. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, "GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy," Phys. Med. Biol. 56, 881-901 (2011). https://doi.org/10.1088/0031-9155/56/4/001
  15. A. Konik, M. T. Madsen, and J. J. Sunderland, "GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size," IEEE Trnas. Nucl. Sci. 59, 1887-1891 (2012). https://doi.org/10.1109/TNS.2012.2205403
  16. S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, "Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images," Phys. Med. Biol. 56, 6441-6457 (2011). https://doi.org/10.1088/0031-9155/56/19/017
  17. D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, "Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging," Phys. Med. Biol. 49, 271-285 (2004). https://doi.org/10.1088/0031-9155/49/2/007
  18. D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, "Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging," Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003). https://doi.org/10.1016/j.nima.2003.07.020
  19. M. Singh and C. Horne, "Use of a germanium detector to optimize scatter correction in SPECT," J. Nucl. Med. 28, 1853-1860 (1987).
  20. T. Takahashi and S. Watanabe, "Recent progress in CdTe and CdZnTe detectors," IEEE Trans. Nucl. Sci. 48, 950-959 (2001). https://doi.org/10.1109/23.958705
  21. J. Xu, S. Miyazaki, and M. Hirose, "High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells," J. Non-Crys. Solids 208, 277-281 (1996). https://doi.org/10.1016/S0022-3093(96)00513-3
  22. S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, "Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications," Sensors 9, 3491-3526 (2009). https://doi.org/10.3390/s90503491
  23. C. Scheiber, "CdTe and CdZnTe detectors in nuclear medicine," Nucl. Instrum. Meth. Phys. Res. 448, 513-524 (2000). https://doi.org/10.1016/S0168-9002(00)00282-5
  24. H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, "Si and CdTe pixel detector developments at Spring-8," Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011). https://doi.org/10.1016/j.nima.2010.04.113
  25. Y.-J. Lee and H.-J. Kim, "Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study," J. Kor. Phys. Soc. 65, 1149-1158 (2014). https://doi.org/10.3938/jkps.65.1149