Whether Pinhole Scan or Single Photon Emission Computed Tomography (SPECT) in the Diagnosis of Bone and Joint Diseases

골격계진단에 있어서 핀홀스캔의 우월성

  • Bahk, Yong-Whee (Department of Radiology, Catholic University Medical College)
  • Published : 1996.03.25

Abstract

Since the publication of the first bone scintiscans in 1962 three decades have elapsed. The bone scan has made great strides during this period, becoming one of the most commonly used nuclear imaging tests. In spite of the progress, however, the specificity of bone scan has remained relatively low. As the result it is a common practice to seek additional information from radiograph, CT scan and MR image, which is euphemistically termed as "image fusion or co-location." The basic reason is the inapplicability of the classical piecemeal analysis to interpreting planar and SPECT bone scans. Such analysis has its base on the observation of elemental features of morphology, which include the size, shape, contour, location, topography and internal architecture. The physiochemical profile may well also be included. Understandably, however, the miniatured images of the planar bone scan cannot provide these features in acceptable detail and the same holds true even with SPECT Images which are but sliced views of the reconstructed planar scans. Fortunately pinhole scanning has the capacity to portray both the morphological and chemical profiles of bone and joint diseases in greater detail through true magnification. The magnitude of pinhole scan resolution is practically comparable to that of radiography as far as gross anatomy is concerned. Thus, we feel strongly that pinhole scanning is a potential breakthrough of the long-lamented low specificity of bone scan. This presentation will discuss the fun-damentals, advantages and disadvantages and the most recent advances of pinhole scanning. It high-lights the actual clinical applications of pinhole scanning in relation to the diagnosis of infective and inflammatory diseases of bone and joint.

Keywords