• Title/Summary/Keyword: piezoelectric ceramic material

Search Result 356, Processing Time 0.024 seconds

Fabrication and Performance Evaluation of Flat-Type Multilayer Piezoelectric Ceramic Ultrasonic Transmitter (평판형 적층 세라믹 초음파 압전 트랜스미터의 제조와 성능 평가)

  • Na, Yong-hyeon;Lee, Min-seon;Cho, Jeong-ho;Paik, Jong-hoo;Lee, Jung Woo;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.207-212
    • /
    • 2019
  • A flat-type piezoelectric ceramic ultrasonic transmitter was successfully fabricated for application in acoustic devices with cone-free diaphragms. The transmitter, possessing a center frequency of 40.6 kHz, exhibited a higher displacement characteristic for a multilayer type compared with a single layer type. Surface roughness treatment of an Al elastic diaphragm influenced a slight increase (1.1 dB) in the sound pressure level (SPL) at $10V_{rms}$ due to the enlarged surface area. The fabricated multilayer piezoelectric ceramic ultrasonic transmitter showed increasing SPL with increasing input voltage, with a maximum SPL of approximately 123.6 dB at $10V_{rms}$. This implies a doubly increased SPL density of $3.6dB/mm^3$, superior to that of a commercial open-type transmitter with a cone.

Electric Characteristics of Disk-type Piezoelectric Transformer (디스크형 압전 변압기 의 전극크기 변화에 대한 전기적 특성)

  • Kim, Dong-Soo;Kim, Young-Deog;Kim, Kwang-Il;Do, Yeung-Soo;Nam, Sung-Jin;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.226-229
    • /
    • 2005
  • In this study, a step-down piezoelectric transformer was fabricated to utilize as an adapter for charging batteries of mobile electronic appliances. The ceramic part of the transformer is $Pb[(Mn_{1/3}Sb_{2/3})_{0.05}Zr_{0.475}Ti_{0.475}]O_3$ with mechanical quality factor of 1600, electromechanical coupling coefficient 59 %, and piezoelectric constant d33 1300, which can be utilized as a piezoelectric transformer. A simply fabricated disk-typed test pattern of diameter 28 mm and thickness 2 mm was used to characterize resonant frequency, Qm, kp according to the different input/output electrode area. efficiency and power as a function of load resistance was also investigated. The sample APT showed some spurious mode and BPT showed better frequency property. Taking all properties which are admittance, effective electromechanical coupling coefficient and mechanical quality factor most suitable for piezoelectric transformer is BPT which has 12 mm diameter electrode and the condition of 15 Vrms, 30 $\Omega$ made the maximum efficiency of 93.7 % and maximum power is 6W with 50 Vrms.

  • PDF

Fabrication of Multilayer Piezoelectric Actuator with AgPd Internal Electrode (AgPd 내부전극을 이용한 적층형 압전 액츄에이터의 제조)

  • 임인호;윤현상;박종주;백동수;박창엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • In this study, multilayer piezoelectric actuators were fabricated with 75 layers by a conventional multi-layer capacitor (MLC) techniques, using 70Ag/30Pd paste as an internal electrode which can be sintered at low temperature and have cost down effect in mass productions. The multilayer piezoelectric actua-tors had no defects such as diffusions of internal electrode to ceramic bodies and shortages of internal electrodes. The multilayer piezoelectric actuators did not show the crack in the ceramics parts and the gapping phenomena in the external eletrodes when Ag paste was used as external electrodes. The multilayer piezoelectric actuators showed a maximum displacement of 4${\mu}{\textrm}{m}$ at 100V dc voltage and kept the maximum displacement constant for 300 seconds. The multilayer piezoelectric actuators showed good matching properties between ceramic bodies and AgPd internal electrodes. We confirmed the possibility of large-scaled production of the multilayer piezoelectric actuators with superior electrical properties and cost down effect using 70Ag/30Pd paste as an internal electrodes.

  • PDF

Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever (바이몰프형 압전세라믹 캔틸레버를 이용한 수력에너지 하베스터 모듈 제작 및 발전 특성)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young Hun;Nahm, Jung Hee;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.943-948
    • /
    • 2012
  • A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.

Comparison of Energy Harvesting Characteristics in Trapezoidal Piezoelectric Cantilever Generator with PZT Laminate Film by Longitudinal (3-3) Mode and Transverse (3-1) Mode (PZT 라미네이트 Trapezoidal Piezoelectric Cantilever Generator의 모드(3-1, 3-3)별 에너지 하베스팅 특성 비교)

  • Lee, Min-seon;Kim, Chang-il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.768-775
    • /
    • 2017
  • Energy harvesting characteristics of trapezoidal piezoelectric cantilever generator, which has a lead zirconate titanate (PZT) laminate film, were compared by longitudinal (3-3) and transverse (3-1) modes. The PZT laminate film, fabricated by a conventional tape casting process, was cofired with Ag electrode at $850^{\circ}C$ for 2 h. A multi-layered Ag electrode by a planar pattern and an interdigitated pattern was applied to the PZT laminate to implement the 3-3 and 3-1 modes, respectively. The energy harvesting performance of the 3-3 mode trapezoidal piezoelectric cantilever generator was better than that of the 3-1 mode. An extremely high output power density of $26.7mW/cm^3$ for the 3-3 mode was obtained at a resonant frequency of 145 Hz under a load resistance of $50{\Omega}$ and acceleration of 1.3 G, which is ~3-times higher than that for the 3-1 mode. Therefore, the 3-3 mode is considered significantly efficient for application to high-performance piezoelectric cantilever generator.

Electric and mechanical properties of $ZrO_2$ reinforced Piezoelectric Ceramics ($ZrO_2$ 첨가된 압전 복합체의 전기-기계 특성)

  • Jeong, Soon-Jong;Kim, Min-Soo;Lee, Dae-Su;Park, Eon-Cheol;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.333-334
    • /
    • 2006
  • The objective of this study is to fabricate a piezoelectric composite consisting of a piezoelectric ceramic and a high toughness material and to evaluate their electromechanical properties for high force actuator applications. The mixture of the piezoelectric material, PMNZT, and high toughness material, $ZrO_2$, exhibited high piezoelectric properties as well as good mechanical fracture resistance. Up to 2 vol% of $ZrO_2$ in PMNZT matrix, piezoelectric $d_{33}$ coefficient was above 400 pC/N, being 80% of that for the original PMNZT, and the toughness showed twice of the PMNZT. When the volume fraction of the $ZrO_2$ was above 5%, however, the piezoelectric coefficient became abruptly decreased and it approached 20% of value for the PMNZT.

  • PDF

The Frequence Band on the Pizoelectric Characteristic of the Piezoelectric Ceramic Filter (압전 세라믹 필터의 압전 특성에 의한 대역폭 의존성에 관한 연구)

  • Lee, S.H.;Seok, J.Y.;Ha, S.J.;Ryu, G.H.;Kim, H.G.;Yoo, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.613-617
    • /
    • 2002
  • The ceramic filters were developed using technology similar to that of quartz crystal and electromechanical filter. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emhpasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations. Nakazawa developed a double-mode resonator as two acoustically coupled single resonators. And he developed 10.7MHz crystal filters using multi-energy trapping mode of thickness shear vibration. He succeeded in realizing a two-pole band pass filter response without external inductance by splitting a dot electrode to creat coupled symmetric and antisymmetric vibration modes. Accordingly, the simulation for ceramic filter were important. So that, this paper were investigated the pass frequency of filter on the electrode length and thickness of ceramic.

  • PDF

Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array (PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터)

  • Lee, Min-Seon;Na, Yong-Hyeon;Park, Jin-Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.418-425
    • /
    • 2019
  • A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.

Effect of $Cr_2O_3$ and $Nb_2O_5$ Additives on the Microstructure and Piezoelectric Properties of PZT Ceramics for Piezoelectric Composite Sensor (압전복합센서용 PZT 세라믹스의 미세구조 및 압전특성에 미치는 $Cr_2O_3$$Nb_2O_5$ 첨가효과)

  • Paik, Jong-Hoo;Eom, Heyung-Keun;Lim, Eun-Kyeong;Kim, Chang-Il;Lee, Mi-Jae;Choi, Byung-Hyun;Kim, Sei-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.27-28
    • /
    • 2005
  • 본 연구에서는$Cr_2O_3$$Nb_2O_5$ 를 첨가한 $Pb(Zr_{0.54}Ti_{0.48})O_3$ 세라믹스에서 $Nb_2O_5$ 첨가량에 따른 소결 및 압전, 유전특성을 조사하였다. $Pb(Zr_{0.54}Ti_{0.48})O_3$ + 0.2 wt% $Cr_2O_3$ + wt% $Nb_2O_5$ ($0.{\sim}2wt.%$)의 첨가량에 따른 압전, 유전특성 및 미세구조에 관해 연구하였다. 본조성에서 $Nb_2O_5$ 첨가량이 증가함에 따라 입경의 크기는 증가하였으며, 0.5 wt% $Nb_2O_5$ 첨가조성에서 $4\sim5\mu m$의 최대 평균입경을 보이다가 그 이상의 첨가 조성에서 급격히 감소하였다. 유전상수와 kp 는 $Nb_2O_5$ 첨가량이 1.0 wt% 조성까지 증가하였다가 그 이상 조성에서 감소하였다. $Nb_2O_5$ 첨가량이 증가함에 따라 삼방정(rhombohedral)구조에서 정방정(tetragonal)구조로 상전이 일어났으며, 본 조성의 상경계 영역인 0.5 wt% 조성에서 $\varepsilon_r$ = 730, $k_p$ = 0.72, $d_{33}$ = 450, $g_{33}$ = 70의 우수한 압전 특성을 나타내었다. 이러한 조성은 접촉센서용 복합압전소재의 실용가능성을 제시하였다.

  • PDF

A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration (컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구)

  • Kim, Chang-il;Lee, Min-seon;Cho, Jung-ho;Paik, Jong-hoo;Jang, Yong-ho;Choi, Beom-jin;Son, Cheon-myoung;Seo, Duk-gi;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.769-775
    • /
    • 2016
  • Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.