DOI QR코드

DOI QR Code

Comparison of Energy Harvesting Characteristics in Trapezoidal Piezoelectric Cantilever Generator with PZT Laminate Film by Longitudinal (3-3) Mode and Transverse (3-1) Mode

PZT 라미네이트 Trapezoidal Piezoelectric Cantilever Generator의 모드(3-1, 3-3)별 에너지 하베스팅 특성 비교

  • Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Chang-il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Woon-ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hong, Youn-woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Yong-ho (Department of Material Science and Engineering, Pusan University) ;
  • Jeong, Young-hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 이민선 (한국세라믹기술원 전자소재부품센터) ;
  • 김창일 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 박운익 (한국세라믹기술원 전자소재부품센터) ;
  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 박용호 (부산대학교 재료공학과) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터)
  • Received : 2017.09.16
  • Accepted : 2017.10.12
  • Published : 2017.12.01

Abstract

Energy harvesting characteristics of trapezoidal piezoelectric cantilever generator, which has a lead zirconate titanate (PZT) laminate film, were compared by longitudinal (3-3) and transverse (3-1) modes. The PZT laminate film, fabricated by a conventional tape casting process, was cofired with Ag electrode at $850^{\circ}C$ for 2 h. A multi-layered Ag electrode by a planar pattern and an interdigitated pattern was applied to the PZT laminate to implement the 3-3 and 3-1 modes, respectively. The energy harvesting performance of the 3-3 mode trapezoidal piezoelectric cantilever generator was better than that of the 3-1 mode. An extremely high output power density of $26.7mW/cm^3$ for the 3-3 mode was obtained at a resonant frequency of 145 Hz under a load resistance of $50{\Omega}$ and acceleration of 1.3 G, which is ~3-times higher than that for the 3-1 mode. Therefore, the 3-3 mode is considered significantly efficient for application to high-performance piezoelectric cantilever generator.

Keywords

References

  1. Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. Wadi, Renew. Sust. Energ. Rev., 26, 837 (2013). [DOI: https://doi.org/10.1016/j.rser.2013.06.023]
  2. M. A. Lazar, D. Al-Masri, D. R. MacFarlane, and J. M. Pringle, Phys. Chem. Chem. Phys., 18, 1404 (2016). [DOI: https://doi.org/10.1039/C5CP04305K]
  3. V. Kuhn, C. Lahuec, F. Seguin, and C. Person, IEEE Trans. Microwave Theory Tech., 63, 1768 (2015). [DOI: https://doi.org/10.1109/TMTT.2015.2416233]
  4. M. Song, Y. Zhang, M. Peng, and J. Zhai, Nano Energy, 6, 66 (2014). [DOI: https://doi.org/10.1016/j.nanoen.2014.02.009]
  5. Q. Zhao, Y. Liu, L. Wang, H. Yang, and D. Cao, Int. J. Pavement Res. Technol., In Press (2017). [DOI: https://doi.org/10.1016/j.ijprt.2017.08.001]
  6. S. Leadenham and A. Erturk, Nonlinear Dyn., 79, 1727 (2015) [DOI: https://doi.org/10.1007/s11071-014-1770-x]
  7. H. Li, C. Tian, and Z. D. Deng, Appl. Phys. Rev., 1, 041301 (2014) [DOI: https://doi.org/10.1063/1.4900845]
  8. V. Annapureddy, M. Kim, H. Palneedi, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong, and J. Ryu, Adv. Energy Mater., 6, 1601244 (2016). [DOI: https://doi.org/10.1002/aenm.201601244]
  9. E. K. Reily, F. Burghardt, R. Fain, and P. Wright, Smart Mater. Struct., 20, 125006 (2011). [DOI: https://doi.org/10.1088/0964-1726/20/12/125006]
  10. R. Hosseini and M. Hamedi, J. Micromech. Microeng., 25, 125008 (2015). [DOI: https://doi.org/10.1088/0960-1317/25/12/125008]
  11. S. B. Ayed, F. Najar, and A. Abdelkefi, Proc. 2009 3rd International Conference on Signals, Circuits and Systems (SCS) (IEEE, Medenine, Tunisia, 2009) p. 1. [DOI: https://doi.org/10.1109/ICSCS.2009.5412553]
  12. D. Benasciutti, L. Moro, S. Zelenika, and E. Brusa, Microsyst. Technol., 16, 657 (2010). [DOI: https://doi.org/10.1007/s00542-009-1000-5]
  13. V. Annapureddy, H. Y. Lee, W. H. Yoon, H. J. Woo, J. H. Lee, H. Palneedi, H. J. Kim, J. J. Choi, D. Y. Jeong, S. N. Yi, and J. H. Ryu, Appl. Phys. Lett., 109, 093901 (2016). [DOI: https://doi.org/10.1063/1.4962047]
  14. C. M. Kim, C. I. Kim, J. H. Lee, J. H. Paik, J. H. Cho, M. P. Chun, Y. H. Jeong, and Y. J. Lee, Trans. Electr. Electron. Mater., 11, 206 (2010). [DOI: https://doi.org/10.4313/TEEM.2010.11.5.206]
  15. B. Tian, H. Li, N, Yang, H. Liu, and Y. Zhao, Proc. 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, Los Angeles, CA, USA, 2017) p. 185 [DOI: https://doi.org/10.1109/NEMS.2017.8017002]
  16. Y. Chen, B. Lu, D. Ou, and X. Feng, Sci. China: Phys., Mech. Astron., 58, 594601 (2015). [DOI: https://doi.org/10.1007/s11433-015-5692-5]
  17. R. Paradies and P. Ciresa, Smart Mater. Struct., 18, 035010 (2009). [DOI: https://doi.org/10.1088/0964-1726/18/3/035010]
  18. H. Yu, J. Zhou, L. Deng, and Z. Wen, Sensors, 14, 3323 (2014). [DOI: https://doi.org/10.3390/s140203323]
  19. C. H. Nguyen, U. Hanke, and E. Halvorsen, Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016 (SPIE, Las Vegas, Nevada, United States, 2016) p. 97991C. [DOI: https://doi.org/10.1117/12.2218843]
  20. H. A. Sodano, J. Lloyd, and D. J. Inman, Smart Mater. Struct., 15, 1211 (2006). [DOI: https://doi.org/10.1088/0964-1726/15/5/007]