• Title/Summary/Keyword: Cantilever generator

Search Result 18, Processing Time 0.028 seconds

Generating Characteristics of a Cantilever Type Piezoelectric Generator for Changeable Frequency (주파수 가변용 외팔보형 압전발전기의 발전특성)

  • Jeong, Seong-Su;Park, Choong-Hyo;Kang, Shin-Chul;Kim, Jong-Wook;Lim, Jung-Hoon;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.865-869
    • /
    • 2011
  • A cantilever-type piezoelectric generator has advantages of simple structure, ease of fabrication and large displacement by transverse vibration of a beam. It is easy to control the natural frequency, and also possible to increase the output power by changing the length, width, and thickness of the generator. In particular, the length increases, the natural frequency sharply decreases, and vice versa. Hence, the natural frequency can widely be controlled by using change in the length of elastic body. In this paper, the generator was designed and fabricated to change natural frequency using the slides of the case. In addition, the generating characteristics were confirmed through finite element analyses and vibration experiment. As a result, the maximum output characteristics could be generated due to resonance phenomenon although any frequency of external force was applied.

A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration (컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구)

  • Kim, Chang-il;Lee, Min-seon;Cho, Jung-ho;Paik, Jong-hoo;Jang, Yong-ho;Choi, Beom-jin;Son, Cheon-myoung;Seo, Duk-gi;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.769-775
    • /
    • 2016
  • Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.

Comparison of Energy Harvesting Characteristics in Trapezoidal Piezoelectric Cantilever Generator with PZT Laminate Film by Longitudinal (3-3) Mode and Transverse (3-1) Mode (PZT 라미네이트 Trapezoidal Piezoelectric Cantilever Generator의 모드(3-1, 3-3)별 에너지 하베스팅 특성 비교)

  • Lee, Min-seon;Kim, Chang-il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.768-775
    • /
    • 2017
  • Energy harvesting characteristics of trapezoidal piezoelectric cantilever generator, which has a lead zirconate titanate (PZT) laminate film, were compared by longitudinal (3-3) and transverse (3-1) modes. The PZT laminate film, fabricated by a conventional tape casting process, was cofired with Ag electrode at $850^{\circ}C$ for 2 h. A multi-layered Ag electrode by a planar pattern and an interdigitated pattern was applied to the PZT laminate to implement the 3-3 and 3-1 modes, respectively. The energy harvesting performance of the 3-3 mode trapezoidal piezoelectric cantilever generator was better than that of the 3-1 mode. An extremely high output power density of $26.7mW/cm^3$ for the 3-3 mode was obtained at a resonant frequency of 145 Hz under a load resistance of $50{\Omega}$ and acceleration of 1.3 G, which is ~3-times higher than that for the 3-1 mode. Therefore, the 3-3 mode is considered significantly efficient for application to high-performance piezoelectric cantilever generator.

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

Frequency Characteristics of Energy Harvester Using Piezoelectric Elements (압전식 에너지 수확기의 주파수 특성)

  • Yun, So-Nam;Kim, Dong-Gun;Ham, Young-Bog;Park, Jung-Ho;Jeong, Byeong-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3131-3135
    • /
    • 2008
  • This paper presents an energy harvester using piezoelectric elements that is a kind of generator which converts the mechanical power to the electric one using windmill system with many PZT actuators. In this study, low frequency characteristics of the cantilever-type piezoelectric actuator are experimentally investigated. Advantages of the cantilever use are to take a very large displacement and to improve the endurance of the PZT element. The material of cantilever is an aluminum and three kinds of cantilever of which size is $150[mm]{\times}20[mm]{\times}1.5[mm]$, $170[mm]{\times}20[mm]{\times}1.5[mm]$ and $190[mm]{\times}20[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the vibrator. The characteristics of frequency and mass variation of cantilever end part such as 0[g], 5[g], 10[g] are investigated. Maximum voltage was outputted at the condition of $150[mm]{\times}20[mm]{\times}1.5[mm]$ and 10[g] of mass. It was confirmed that the lower natural frequency at the larger length of cantilever and at the bigger of mass is gotten.

  • PDF

Piezoelectric Energy Harvesting Characteristics of Trapezoidal PZT/Ag Laminate Cantilever Generator (사다리꼴 PZT/Ag Laminate 외팔보 발전기의 압전 에너지 하베스팅 특성)

  • Na, Yong-Hyeon;Lee, Min-Seon;Yun, Ji-Sun;Hong, Youn-Woo;Paik, Jong-Hoo;Cho, Jeong-Ho;Lee, Jung Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.462-468
    • /
    • 2018
  • The piezoelectric energy harvesting characteristics of a trapezoidal cantilever generator with lead zirconate titanate (PZT) laminate were investigated with various Ag inner electrodes. The piezoelectric mode of operation was a transverse mode by using a planar electrode pattern. The piezoelectric cantilever generator was fabricated using trapezoidal cofired-PZT/Ag laminates by five specimens of 2, 3, 4, 7, and 13 layers of Ag. As the number of Ag electrodes increased, impedance and output voltage at resonant frequency significantly decreased, and capacitance and output current showed an increasing tendency. A maximum output power density of $7.60mW/cm^3$ was realized for the specimen with seven Ag layers in the optimal condition of acceleration (1.2 g) and resistive load ($600{\Omega}$), which corresponds to a normalized power factor of $5.28mW/g^2{\cdot}cm^3$.

A study of vibration energy harvesting for the bimorph piezoelectric sensor (바이몰프 압전센서의 진동에너지 수확에 관한 연구)

  • Kim, Yong-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.313-319
    • /
    • 2010
  • Vibration energy harvesting is an attractive technique for potential powering of low power devices such as wireless sensors and portable electronic applications. Most energy generator developed to date are single vibration frequency based, and while some efforts have been made to broaden the frequency range of energy harvester. In this work, The effect of energy harvesting were investigated at various vibration frequencies, vibration beams, vibration point and test masses. The maximum output voltage of the bimorph piezoelectric cantilever was shifted according to vibration point. Vibration frequency with maximum output voltage decreased with the increasing length of vibration beam and increasing test mass. The sample with vibration beam length 0.5 L generated a peak output voltage of 32 $V_{rms}$ and shows a 45 % increase in voltage output in comparison to the corresponding original bimorph. It was found that a piezoelectric bimorph has a possibility to be as the energy harvesting cantilever, which is successfully tuned over a vibration frequency range to enable a maximum harvesting energy.

Piezoelectric Energy Harvesting Characteristics of Hard PZT Interdigitated Electrode (IDE) Unimorph Cantilever (Hard PZT IDE 유니몰프 캔틸레버의 압전 에너지 하베스팅 특성)

  • Lee, Min-seon;Kim, Chang-il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Cho, Jeong-ho;Paik, Jong-hoo;Park, Yong-ho;Jang, Yong-ho;Choi, Beom-jin;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.501-507
    • /
    • 2017
  • A unimorph piezoelectric cantilever generator with an interdigitated electrode (IDE) was developed for vibration energy harvester applications driven in the longitudinal mode. Hard lead zirconate titanate (PZT) ceramic with a high $Q_m$ of 1,280 was used as the piezoelectric active material. Ten PZT sheets produced by tape casting were laminated and co-fired with an Ag/Pd IDE at $1,050^{\circ}C$ for 2 h. The approximately $280{\mu}m$-thick co-fired PZT laminate with the IDE was attached to a stainless steel substrate with an adhesive epoxy for the fabrication of an IDE unimorph cantilever. Its energy harvesting characteristics were evaluated: an output power of $1.1{\mu}W$ at 120 Hz across the resistive load of $700k{\Omega}$ was obtained, corresponding to a normalized power factor of $4.1{\mu}W/(G^2{\cdot}cm^3)$.

Modeling And Analysis of a Piezoelectric Vibration-Induced Micro Power Generator (진동에 의한 압전 마이크로 발전기의 모델링 및 해석)

  • Kim, Joon-Hong;Park, Moon-Soo;Lee, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.741-745
    • /
    • 2007
  • Supplying power to microsystems that have no physical connection to the outside is difficult, and using batteries is not always appropriate. This paper discusses how to generate electricity from mechanical energy when vibrated in a cantilever beam. A model for the system predicts that the output power of the system is maximized when the mechanical damping in the system is minimized. Furthermore, to cover a wide frequency range and to be useful in a number of applications, a system of beams with different resonant frequencies has been designed and optimized. This information makes it possible to determine what design alternatives are feasible for the creation of a micro power supply for any specific application of MEMS.

  • PDF

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics (CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성)

  • Chung, Gwiy-Sang;Lee, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.