DOI QR코드

DOI QR Code

Optimization of Electrode Pattern for Multilayer Ceramic Heater by Finite Element Method

유한요소법에 의한 적층형 세라믹 히터의 전극 패턴 최적화

  • Han, Yoonsoo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Shi Yeon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Yeo, Dong-Hun (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology)
  • 한윤수 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김시연 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 여동훈 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2017.10.23
  • Accepted : 2017.10.27
  • Published : 2017.12.01

Abstract

In this study, we investigated the effect of electrode pattern design on the thermal shock resistance and temperature uniformity of a ceramic heater. A cordierite substrate with a low thermal expansion coefficient was fabricated by tape casting, and a tungsten electrode was printed and used as a heating element. The temperature distribution of the ceramic heater was calculated by a finite-element method (FEM) by considering various electrode patterns, and the tensile stress distribution due to the thermal stress was calculated. In the electrode pattern with a single-line width, the central part of the ceramic heater was heated to the maximum temperature, and the position of the ceramic heater having a double-line width was changed to the maximum temperature, depending on the position of the minimum line width pattern. The highest tensile stress was found along the edges of the ceramic heater. The temperature gradient at the edge determined the tensile stress intensity. The smallest tensile stress was observed for electrode pattern D, which was expected to be advantageous in resisting thermal shock failures in ceramic heaters.

Keywords

References

  1. K. A. Peterson, K. D. Patel, C. K. Ho, S. B. Rohde, C. D. Nordquist, C. A. Walker, B. D. Wroblewski, and M. Okandan, Int. J. Appl. Ceram. Technol., 2, 345 (2005). [DOI: https://doi.org/10.1111/j.1744-7402.2005.02039.x]
  2. H. Liu, Q. Qu, Q. Pan, Y. Wu, C. Huang, L. Li, M. Yu, and L. Guo, IEEE Trans. Appl. Supercond., 24, 7700204 (2014). [DOI: https://doi.org/10.1109/TASC.2013.2287278]
  3. N. M. Alford, J. Breeze, X. Wang, S. J. Penn, S. Dalla, S. J. Webb, N. Ljepojevic, and X. Aupi, J. Eur. Ceram. Soc., 21, 2605 (2001). [DOI: https://doi.org/10.1016/S0955-2219(01)00324-7]
  4. D. G. Cahill, Rev. Sci. Instrum., 73, 3701 (2002). [DOI: https://doi.org/10.1063/1.1141498]
  5. T. Kojima, Y. Kuroki, and K. Yanagi, U.S. 5895591 A, 20 April, 1999.
  6. G. A. Cogotsi, V. P. Zavada, and F. Ya. Kharitonov, Strength Mater., 16, 1651 (1984). [DOI: https://doi.org/10.1007/BF01537992]
  7. X. Ding and J. J. Frye, U.S. 6929974 B2, 16 August, 2005.
  8. W. K. Jones, Y. Liu, and M. Gao, IEEE Trans. Compon. Packag. Technol., 26, 110 (2003). [DOI: https://doi.org/10.1109/TCAPT.2003.811475]
  9. B. Souhir, G. Sami, C. S. Hekmet, and K. Abdennaceur, Trans. Electr. Electron. Mater., 17, 189 (2016). [DOI: https://doi.org/10.4313/TEEM.2016.17.4.189]
  10. G. A. Gogotsi, Ceramurgia Int., 6, 31 (1980). [DOI: https://doi.org/10.1016/0390-5519(80)90030-7]