DOI QR코드

DOI QR Code

The Variation of Packing Density According to Powder Size Distribution and Epoxy Resin in Soft Magnetic Composite

연자성 복합체에서 파우더 크기 분포와 Epoxy Resin에 따른 Packing Density 변화

  • Lee, Chang Hyun (Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Sea Moon (Department of Materials Science and Engineering, Kyungpook National University) ;
  • Shin, Hyo Soon (Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong Hun (Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin Ho (Department of Materials Science and Engineering, Kyungpook National University)
  • 이창현 (한국세라믹기술원 나노융합소재센터) ;
  • 오세문 (경북대학교 재료공학부) ;
  • 신효순 (한국세라믹기술원 나노융합소재센터) ;
  • 여동훈 (한국세라믹기술원 나노융합소재센터) ;
  • 김진호 (경북대학교 재료공학부)
  • Received : 2017.10.19
  • Accepted : 2017.10.30
  • Published : 2017.12.01

Abstract

There is growing interest in power inductors in which metal soft magnetic powder and epoxy resin are combined. In this field, the process technology for increasing the packing density of magnetic particles in an injection molding process is very important. However, little research has been reported in this regard. In order to improve the packing density, we investigated and compared the sedimentation heights of pastes for three types of soft magnetic alloy powders as a function of the mixing ratios and the type of resin used. Experimental results showed that the packing density was the highest (71.74%) when the mixing ratio was 80 : 16 : 4 (Sendust : Fe-S : CIP) according to the particle size using an SE-4125 resin. In addition, the packing density was found to be inversely related to the layer separation distance. As a result, it was confirmed that the dispersion of solid particles in the paste was important for curing; however, the duration of the curing process can greatly affect the packing density of the final composite.

Keywords

References

  1. T. Tokuoka, T. Ishimine, T. Maeda, and K. Matsunuma, J. Jpn. Soc. Powder Powder Metall., 60, 108 (2013). [DOI: https://doi.org/10.2497/jjspm.60.108]
  2. J. Murbe and J. Topfer, J. Electroceram., 15, 215 (2005). [DOI: https://doi.org/10.1007/s10832-005-3278-8]
  3. H. Su, H. Zhang, X. Tang, L. Jia, and Q. Wen, Mater. Sci. Eng. B, 129, 172 (2006). [DOI: https://doi.org/10.1016/j.mseb.2006.01.008]
  4. S. Y. An, I. S. Kim, S. H. Son, S. Y. Song, J. W. Hahn, and K. R. Choi, J. Korean Magn. Soc., 20, 182 (2010). [DOI: https://doi.org/10.4283/JKMS.2010.20.5.182]
  5. W. Y. Jeung, H. K. Kim, and J. O. Lee, J. Korean Magn. Soc., 15, 241 (2005). [DOI: https://doi.org/10.4283/JKMS.2005.15.4.241]
  6. H. Shokrollahi and K. Janghorban, J. Mater. Process. Technol., 189, 1 (2007). [DOI: https://doi.org/10.1016/j.jmatprotec.2007.02.034]
  7. L. Huang, Z. H. Yuan, B. S. Tao, C. H. Wan, P. Guo, Q. T. Zhang, L. Yin, J. F. Feng, T. Nakano, H. Naganuma, H. F. Liu, Y. Yan, and X. F. Han, J. Appl. Phys., 122, 113903 (2017). [DOI: https://doi.org/10.1063/1.4990478]
  8. J. W. Han, B. K. Kim, and H. J. Je, Korean J. Mater. Res., 18, 542 (2008). [DOI: https://doi.org/10.3740/MRSK.2008.18.10.542]
  9. H.J.H. Brouwers, Phys. Rev. E, 87, 032202 (2013). [DOI: https://doi.org/10.1103/PhysRevE.87.032202]
  10. B. V. Velamakanni and F. F. Lange, J. Am. Ceram. Soc., 74, 166 (1991). [DOI: https://doi.org/10.1111/j.1151-2916.1991.tb07313.x]
  11. H. Y. Na, B. C. Yoon, S. H. Kim, and S. J. Lee, Elastomers Compos., 48, 133 (2013). [DOI: https://doi.org/10.7473/EC.2013.48.2.133]