DOI QR코드

DOI QR Code

Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array

PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터

  • Lee, Min-Seon (Optoelectronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Na, Yong-Hyeon (Optoelectronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Jin-Woo (Department of Materials Science and Engineering, Yonsei University) ;
  • Jeong, Young-Hun (Optoelectronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 이민선 (한국세라믹기술원 광전자부품소재센터) ;
  • 나용현 (한국세라믹기술원 광전자부품소재센터) ;
  • 박진우 (연세대학교 신소재공학과) ;
  • 정영훈 (한국세라믹기술원 광전자부품소재센터)
  • Received : 2019.06.27
  • Accepted : 2019.07.29
  • Published : 2019.09.01

Abstract

A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.

Keywords

References

  1. L. Zhao and Y. Yang, Smart Struct. Syst., 19, 67 (2017). [DOI:https://doi.org/10.12989/sss.2017.19.1.067]
  2. Y. Guo, Y. Chen, J. Ma, H. Zhu, X. Cao, N. Wang, and Z. L. Wang, Nano Energy, 60, 641 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2019.03.094]
  3. J. Zhang, Z. Fang, C. Shu, J. Zhang, Q. Zhang, and C. Li, Sens. Actuators, A, 262, 123 (2017). [DOI: https://doi.org/10.1016/j.sna.2017.05.027]
  4. Z. Zhao, X. Pu, C. Du, L. Li, C. Jiang, W. Hu, and Z. L. Wang, ACS Nano, 10, 1780 (2016). [DOI: https://doi.org/10.1021/acsnano.5b07157]
  5. N. Wu, Q. Wang, and X. Xie, Smart Mater. Struct., 22, 095023 (2013). [DOI: https://doi.org/10.1088/0964-1726/22/9/095023]
  6. S. Orrego, K. Shoele, A. Ruas, K. Doran, B. Caggiano, R. Mittal, and S. H. Kang, Appl. Energy, 194, 212 (2017). [DOI:https://doi.org/10.1016/j.apenergy.2017.03.016]
  7. N. Han, D. Zhao, J. U. Schluter, E. S. Goh, H. Zhao, and X. Jin, Appl. Energy, 178, 672 (2016). [DOI: https://doi.org/10.1016/j.apenergy.2016.06.013]
  8. P. Wang, L. Pan, J. Wang, M. Xu, G. Dai, H. Zou, K. Dong, and Z. L. Wang, ACS Nano, 12, 9433 (2018). [DOI: https://doi.org/10.1021/acsnano.8b04654]
  9. R. T. Abdulmunam, L. Y. Taha, and P. C. Ivey, Int. J. Inf. Electron. Eng., 2, 912 (2012). [DOI: https://doi.org/10.7763/IJIEE.2012.V2.240]
  10. M. Perez, S. Boisseau, P. Gansnier, J. Willemin, and J. L. Reboud, Smart Mater. Struct., 24, 035004 (2015). [DOI:https://doi.org/10.1088/0964-1726/24/3/035004]
  11. www.seoul.co.kr/news/newsView.php?id=201711 20016001.
  12. L. B. Zhang, H. L. Dai, A. Abdelkefi, and L. Wang, Appl. Phys. Lett., 111, 073904 (2017). [DOI: https://doi.org/10.1063/1.4999765]
  13. J. Zhang, Z. Fang, C. Shu, J. Zhang, Q. Zhang, and C. Li, Sens. Actuators, A, 262, 123 (2017). [DOI: https://doi.org/10.1016/j.sna.2017.05.027]
  14. C. H. Yang, Y. Song, J. Jhun, W. S. Hwang, S. D. Hong, S. B. Woo, and T. H. Sung, J. Korean Phys. Soc., 73, 1889 (2018). [DOI: https://doi.org/10.3938/jkps.73.1889]
  15. H. Xia, Y. Xia, Y. Ye, L. Qian, and G. Shi, IEEE Trans. Ind. Electron., 66, 8235 (2019). [DOI: https://doi.org/10.1109/TIE.2018.2883277]
  16. M. Wu, X. Yuan, H. Luo, H. Chen, C. Chen, K. Zhou, and D. Zhang, Phys. Lett. A, 381, 1641 (2017). [DOI: https://doi.org/10.1016/j.physleta.2017.02.025]
  17. D. Tan, P. Yavarow, and A. Erturk, Compos. Struct., 187, 137 (2018). [DOI: https://doi.org/10.1016/j.compstruct.2017.12.056]
  18. E. Romero, V. Sundararajan, N. Bonilla, C. Matrinez, A. Rincon, In: ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. p.955-960. [DOI: https://doi.org/10.1115/IMECE2012-86992]
  19. D. Grzybek and P. Micek, Phys. Scr., 94, 095802 (2019). [DOI: https://doi.org/10.1088/1402-4896/ab0d49]
  20. M. S. Lee, C. I. Kim, W. I. Park, J. H. Cho, J. H. Paik, and Y. H. Jeong, Energy, 179, 373 (2019). [DOI: https://doi.org/10.1016/j.energy.2019.04.215]
  21. X. Yuan, S. Zhu, X. Li, C. Chen, K. Zhou, and D. Zhang, Mater. Des., 128, 71 (2017). [DOI: https://doi.org/10.1016/j.matdes.2017.04.098]