DOI QR코드

DOI QR Code

Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever

바이몰프형 압전세라믹 캔틸레버를 이용한 수력에너지 하베스터 모듈 제작 및 발전 특성

  • Kim, Kyoung-Bum (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Chang-Il (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Yun, Ji-Sun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeong, Young Hun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Jung Hee (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Jeong-Ho (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Paik, Jong-Hoo (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Seong, Tae-Hyeon (Department of Electrical Engineering, Hanyang University)
  • 김경범 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 김창일 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 윤지선 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 정영훈 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 남중희 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 조정호 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 백종후 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 성태현 (한양대학교 전기공학과)
  • Received : 2012.10.12
  • Accepted : 2012.11.01
  • Published : 2012.12.01

Abstract

A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.

Keywords

References

  1. S. R. Anton and H. A. Sodano, Smart Mater. Struct., 16, R1 (2007). https://doi.org/10.1088/0964-1726/16/3/R01
  2. N. S. Shenck and J. A. Paradiso, IEEE Micro, 21, 30 (2001). https://doi.org/10.1109/40.928763
  3. J. Feenstra, J. Granstrom, and H. Sodano, Mechanical Systems and Signal Processing, 22, 721 (2008). https://doi.org/10.1016/j.ymssp.2007.09.015
  4. P. X. Gao, J. Song, J. Liu, and Z. L. Wang, Adv. Mater., 19, 67 (2007). https://doi.org/10.1002/adma.200601162
  5. Z. L. Wang and J. Song, Science, 312, 242 (2006). https://doi.org/10.1126/science.1124005
  6. H. C. Song, H. C. Kim, C. Y. Kang, H. J. Kim, S. J. Yoon, and D. Y. Jeong, J. Electroceram., 23, 301 (2009). https://doi.org/10.1007/s10832-008-9439-9
  7. Priya, IEEE Trans. Ultra. Ferroelec. Freq. Cont., 57, 2610 (2010). https://doi.org/10.1109/TUFFC.2010.1734
  8. R. Guigon, J. J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct., 17, 015038 (2008). https://doi.org/10.1088/0964-1726/17/01/015038
  9. J. J. Allen and A. J. Smits, J. Fluids Struct., 15, 629 (2001). https://doi.org/10.1006/jfls.2000.0355
  10. J. H. Gerrard, J. Fluid Mech., 25, 401 (1966). https://doi.org/10.1017/S0022112066001721
  11. H. Techet-Alexandra, J. Allen-James, and J. Smits-Alexander, In Proceedings of the International Offshore and Polar Engineering Conference, 2002.
  12. R. Guigon, J. J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct., 17, 015039 (2007).
  13. G. Taylor, U.S. Patent, 4404490 (1983).
  14. N. Shinjo, PhD. Dissertation, Florida Institute of Technology (2005).
  15. S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Proc. SPIE-EAPAD, 6927, 692715 (2008).
  16. S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Proc. SPIE-EAPAD, 6524, 652424 (2007).
  17. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1997) p. 129.
  18. Phillips Components, Piezo Ceramic Products (Technical Information, 2000) p. 3.
  19. C. M, Kim, Master Thesis, p. 95-110, Yonsei University, Seoul (2010).
  20. K. B. Kim, C. I. Kim, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, and S. Nahm, J. Eur. Ceram. Soc., (In press)