• 제목/요약/키워드: piezoelectric bimorph

검색결과 85건 처리시간 0.029초

바이몰프형 압전세라믹 캔틸레버를 이용한 수력에너지 하베스터 모듈 제작 및 발전 특성 (Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever)

  • 김경범;김창일;윤지선;정영훈;남중희;조정호;백종후;남산;성태현
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.943-948
    • /
    • 2012
  • A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.

A STUDY ON PIEZOELECTRIC PROPERTIES OF PVDF AND ITS COPOLYMERS

  • Ansari, Mohd.Zahid;Cho, Chong-Du
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.584-589
    • /
    • 2007
  • Polyvinylidene fluoride (PVDF) is a type of electroactive polymer which shows significant shape change when exposed to electric field. PVDF is generally used as a film sensor in non-destructive evaluation (NDE) of materials. In this study, however, its properties relevant to film actuator are considered. Since most of the electromechanical applications that use PVDF and its copolymers as actuators use their piezoelectric properties, only the piezoelectric properties of PVDF are discussed here. These properties depend mainly on the degree of crystallinity of PVDF. Available data from recent research publications are used to simulate the response of a PVDF bimorph beam on the application of electric field, by a commercial finite element analysis package ANSYS. Finally, the factors that affect mechanical behavior of PVDF bimorph beam are discussed.

  • PDF

Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control

  • Kim, Byeongil;Washington, Gregory N.;Yoon, Hwan-Sik
    • Smart Structures and Systems
    • /
    • 제11권6호
    • /
    • pp.623-635
    • /
    • 2013
  • This paper investigates application of a control algorithm called model predictive sliding mode control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively new control algorithm where model predictive control is employed to enhance sliding mode control by enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected as an experimental test bed in order to verify the robustness of MPSMC in active vibration control applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered beam at least by 29% regardless of modified mass distribution.

압전소자 밸브 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Pneumatic Valve with Piezoelectric Element)

  • 윤소남;함영복;조정대;유찬수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.828-831
    • /
    • 2003
  • The benefits of the pneumatic valve with piezoelectric element are faster response times, low energy consumption, and the ability to be used in hazardous environments and field bus systems. In this paper, PZT actuator, 2 and 3 stages pneumatic valve were designed and manufactured. Also. characteristics of the pneumatic valve with piezoelectric element were tested with a testing system. It is confirmed that the PZT actuator is useful one for controlling the direction of pilot valve.

  • PDF

스피커 응용을 위한 적층형 압전 세라믹 액츄에이터 제조 및 특성 (Characteristics and Fabrication of Multi-Layered Piezoelectric Ceramic Actuators for Speaker Application)

  • 이민선;윤지선;박운익;홍연우;백종후;조정호;박용호;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권10호
    • /
    • pp.601-607
    • /
    • 2016
  • Piezoelectric thick films of soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material (S55) were fabricated using a conventional tape casting method. Ag-Pd electrodes were printed on the piezoelectric film at room temperature and all 5 layered films with a dimension of $12mm{\times}16mm$ were successfully laminated for a multi-layered piezoelectric ceramic actuator. The laminated specimens were co-fired at $1,100^{\circ}C$ for 1 h. A flat layered and dense microstructure was obtained for the $112{\mu}m$ thick piezoelectric actuator after sintering process. Thereafter, a prototype piezoelectric speaker was fabricated using the multi-layered piezoelectric ceramic actuator which can operate as a bimorph. Its SPL (sound pressure level) characteristic was also evaluated for speaker application. Frequency response revealed that the output SPL with a root mean square voltage of 10 V increased gradually to the highest peak of 87.5 dB for 1.5 kHz and exhibited a relatively stable behavior over the measured frequency range (${\leq}20kHz$) at a distance of 10 cm, implying that the fabricated piezoelectric speaker is potential for speaker applications.

바이몰프형 밴딩 액츄에이터를 이용한 선집속형 초음파 트랜스듀서의 초점 거리 제어 (Focal Length Control of Line-focus Ultrasonic Transducer Using Bimorph-type Bending Actuator)

  • 채민구;하강열;김무준
    • 한국음향학회지
    • /
    • 제22권3호
    • /
    • pp.202-207
    • /
    • 2003
  • 초음파트랜스듀서는 초점거리의 제어를 위해서 각 진동요소에 전기회로를 이용한 위상가중치를 부가하는 방식을 사용하고 있다. 그러나 이러한 방법은 진동요소가 증가함에 따라 전기회로가 더욱 복잡해진다. 본 연구에서는 바이몰프형 액츄에이터를 신호의 송수신을 하는PVDF의 뒷부분에 삽입하여 선집속형 트랜스듀서를 제작하였다. 이 트랜스듀서를 사용하여 액츄에이터에 인가되는 전압 변화에 의해 기계적으로 초점거리를 제어할 수 있었다. 이 방법을 사용한 결과 수중에서 선집속형 초음파 트랜스듀서의 초점거리를 곡률 반경의 10%범위까지 제어 가능함을 확인하였다.

$Bi_2O_3$치환에 따른 $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$ 세라믹스의 압전 및 전계유기 왜형 특성 (Piezoelectric and Electro-induced Strain Properties of $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$Ceramics with the Substitution of $Bi_2O_3$)

  • 윤현상;정회승;임인호;윤광희;김준한;박창엽
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권5호
    • /
    • pp.434-439
    • /
    • 1997
  • It this paper, the piezoelectric and electro-induced strain properties of (P $b_{1-}$2x/3/B $i_{x}$ )[N $i_{1}$3/N $b_{2}$3/)$_{0.4}$( $Ti_{0.6}$Z $r_{0.4}$)$_{0.6}$] $O_3$ceramics (x=0, 0.005, 0.02) were investigated with the substitution of B $i^{3+}$, and the feasibility of the application for bimorph actuator was evaluated by measuring the dynamic properties of the piezoelectric bimorph fabricated with above ceramics. Dielectric constant was enhanced with the increase of B $i^{3+}$ substitution, and appeared the maximum value of 5032 at x=0.01 composition. Increasing the substitution of B $i^{3+}$, the electromechanical coefficient( $k_{p}$ , $k_{31}$ ) was increased up to the substitution of 0.5 mol% B $i^{3+}$, showed the value of 0.656, 0.439, respectively. The piezoelectric constant( $d_{33}$ $d_{31}$ ) had the highest value of 344, 825 with the substitution of 0.5 mol% B $i^{3+}$. The strain, generated by 60 Hz AC electric field, had the largest value of 1200($\times$10$^{-6}$ $\Delta$1/1) in the composition with the substitution of 0.5 mol% B $i^{3+}$. The dynamic properties of the bimorph actuator, fabricated with the composition substitution of 0.5 mol% B $i^{3+}$, showed the largest value of 325 $\mu$m at $\pm$150 V square pulse. square pulse.are pulse..

  • PDF

Design and Evaluation of a Piezoelectric Energy Harvester Produced with a Finite Element Method

  • Kim, Chul-Min;Kim, Chang-Il;Lee, Joo-Hee;Paik, Jong-Hoo;Cho, Jeong-Ho;Chun, Myoung-Pyo;Jeong, Young-Hun;Lee, Young-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권5호
    • /
    • pp.206-211
    • /
    • 2010
  • Piezoelectric energy harvesting uses piezoelectric, which is able to convert unused mechanical vibration energy to electrical energy, such as with motor and machinery. The piezoelectric energy harvester was constructed with a cantilever made of lead zirconate titanate with a metal plate. The primary material was soft lead zirconium titanate (PZT-5H) due to the large strain availability, acceptable mechanical strength and high piezoelectric constant. This technique's drawback is that the energy efficiency is lower than the other energy harvesting methods, but this study increases the output electric power efficiency by analyzing a finite element method for the structure of the piezoelectric energy harvester. We manufactured two cantilever types as follows: the L-60 and L-33 bimorph piezoelectric energy harvesters. Their resulting energy harvesters were able to obtain high voltage values as follows: 27.4 mV and 40.6 mV. Moreover, these results have a similar band of resonance frequency it comparison to the simulation. Consequently, this study was confirmed with validity. The output electric powers of the L-60 and L-33 types have 3.1 mW/s and 5.8 mW/s with 47 Hz and 148 Hz of resonance frequency and then, the load resistivities were $100k\Omega$ and $10k\Omega$, respectively.