• 제목/요약/키워드: physical and electrical properties

검색결과 931건 처리시간 0.035초

카본나노튜브가 액정의 물성과 Twisted Nematic 액정 셀의 전기광학 특성에 미치는 영향 (Carbon Nanotube Effects on Physical Properties of Liquid Crystal and Electro-Optic Characteristics of Twisted Nematic Liquid Crystal Cell)

  • 전상연;정석진;정석호;신승환;안계혁;이승은;이승희;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.41-42
    • /
    • 2006
  • Carbon nanotubes (CNTs) effects on physical properties of the liquid crystal and twisted nematic (TN) liquid crystal (LC) cells have been investigated. The minute doping of CNTs reduces rotational viscosity of the LC, and thus switching time of the TN cells is improved, especially in grey scale response time. In addition, the dielectric anisotropy and birefringence are not affected by such a small amount of CNT-doping and thus voltage-dependent transmittance remains the same.

  • PDF

Cosputtering법으로 증착한 ZnO박막의 Al도핑농도가 미세구조 및 물리적 특성에 끼치는 효과 (Effects of Al Doping Concentration on the Microstructure and Physical Properties of ZnO Thin Films Deposited by Cosputtering)

  • 임근빈;이종무
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.604-607
    • /
    • 2005
  • Dependence of the crystallinity, surface roughness, carrier concentration, carrier mobility, electrical resistivity and transmittance of Al-doped ZnO films deposited on glass substrates by RF-magnetron sputtering on effects of the ratio of the RF power for AlZnO to that for ZnO (R) have been investigated. X-ray diffraction spectra show strong preferred orientation along the c-axis. The full width at half maximum (FWHM) of the ZnO (002) peak decreases slightly as R increases in the range of R<1.0, whereas it increases substantially in the range of R>1.0. Scanning electron micrographs (SEM) show that the ZnO film surface becomes coarse as R increases. The carrier concentration and the carrier mobility in the ZnO thin film are maximal for R=1.5 and 1.0, respectively. The electrical resistivity is minimal for R=1.0 The transmittance of the ZnO:Al film tends to increase, but to decrease slightly in the range of R>0.5. It may be concluded that the optimum R value is 1.0, considering all these analysis results. The cause of the changes in the structure and physical properties of ZnO thin films with R are also discussed.

전처리 농축 정도에 따른 Aloe Vera gel의 동결건조분말의 물성 (Physical Properties of Freeze-Dried Powder of Aloe Vera Gel with Respect to the Concentrating Degree as Pre-Treatment)

  • 이남재;이승주
    • 한국식품과학회지
    • /
    • 제41권1호
    • /
    • pp.32-36
    • /
    • 2009
  • 농축시킨 Aloe vera gel을 동결건조하였을 때 그 농축도 차이에 의한 최종 건조분말의 물성 변화를 비교분석하였다. 분말의 최종 수분함량은 거의 차이가 없었으며. 점성 측정에서는 높은 농축 조건의 경우 전형적인 shear thinning 현상과 non-Newtonian 유체의 속성을 나타냈다. 이에 비하여 낮은 농축 조건의 경우 Newtonian 액체의 성질과 고형분이 입자가 아닌 풀린 형태로 존재할 때 나타나는 현상을 보였다. 분말이 물에 용해되는 동안 전기전도도의 변화를 실시간으로 측정한 결과 평형상태에 도달하였을 때, 가장 높은 농축 조건에서 전기전도도가 가장 낮게 나타나, 비전해질성 물질의 용해도가 가장 큰 것으로 해석되었다. 분말의 등온흡습성에서는 농축이 증가할수록 수분 흡착과 결합수의 양이 작아지는 것으로 분석되었다. 결과적으로 Aloe vera gel을 농축하여 동결건조할 때는 그 농축도에 따라 점성, 현탁시 전기전도도에 따른 용해성, 등온흡습성이 변하는 것으로 나타나, 특정 품질의 동결건조제품을 얻기 위해서는 그에 대한 농축의 최적화가 필요한 것으로 생각된다.

플라즈마 폴리머의 물리적, 전기적 특성에서 다이아몬드상 탄소 패시베시션이 미치는 영향 (Effect of Diamond-Like Carbon Passivation on Physical and Electrical Properties of Plasma Polymer)

  • 박용섭;조상진;부진효
    • 한국진공학회지
    • /
    • 제21권4호
    • /
    • pp.193-198
    • /
    • 2012
  • 플라즈마화학기상증착 장치를 이용하여 플라즈마 폴리머와 다이아몬드상 탄소(diamond-like carbon, DLC) 박막을 합성하였다. 플라즈마 폴리머 박막 위에 패시베이션 층으로 DLC 박막을 두께에 따라 합성하였고, DLC/플라즈마 폴리머 박막의 구조적, 물리적, 전기적 특성들을 고찰하였다. 기존 플라즈마 폴리머는 누설 전류 특성이 좋고 낮은 유전상수 값을 가지고 있다. 그러나 실제 반도체 공정에 적용되기 위해서는 물리적 특성도 만족되어야 하기 때문에 플라즈마 폴리머 박막 위에 DLC 패시베이션을 적용하여 플라즈마 폴리머의 물리적, 전기적 특성들을 향상시키고자 하였다. DLC 박막의 두께가 증가함에 따라 플라즈마 폴리머의 경도와 탄성계수 값은 증가하였고, root-mean-square 표면거칠기 값은 감소하고 접촉각은 증가하였다. DLC 패시베이션 되어진 플라즈마 폴리머의 경우 패시베이션이 없는 폴리머보다 유전상수 값이 증가하였지만 전기적 누설전류 특성은 향상되었다.

산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구 (Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure)

  • 이상엽;김지환;박동희;변동진;최원국
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

P형 in-situ 도핑 폴리실리콘 막질에 관한 연구 (Study on P-type in-situ doped Polysilicon Films)

  • 오정섭;이상은;노진태;이상우;배경성;노용한
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.208-212
    • /
    • 2008
  • This paper reports physical properties of in situ boron doped silicon films made from boron source gas and silane ($SiH_4$) gas in a conventional low-pressure chemical vapor deposition vertical furnace. If the p-type polysilicon is formed by boron implantation into undoped polysilicon, the plasma nitridation (PN) process is added on the oxide in order to suppress boron penetration that can be caused during the thermal treatments used in fabrication. In-situ boron doped polysilicon deposition can complete p-type polysilicon film with only one deposition process and need not the PN process, because there is not interdiffusion of dopant at the intermediate temperatures of the subsequent steps. Since in-situ boron doped polysilicon films have higher work function than that of n-type polysilicon and they are compatible with the underlying oxide, they may be promising materials for improving memory cell characteristics if we make its profit of these physical properties.

나노 콜로이달 실리카를 이용한 포장용지의 미끄럼특성 제어 (The Control of Anti-slip Characteristics of Packaging Paper Using Nano-colloidal Silica)

  • 이원노;김형진
    • 펄프종이기술
    • /
    • 제37권3호
    • /
    • pp.33-40
    • /
    • 2005
  • In this study, a nano-colloidal silica sol was applied to control the anti-slip property by spraying on kraft paper. Two kinds of nano-colloidal silica sol which have cationic and anionic charge were applied in kraft paper, and the friction and physical strength properties of kraft paper were investigated. The application of colloidal silica sol on wet web in wet-end process by spraying method was tried to improve the friction property and to avoid the general problems of machine contaminations caused by the scattering of sprayed silica particles in dryer part. The physical properties of sheet were also improved by the application of wet web spraying method, and the optimum conditions of wet web spraying operation were closely related with the conditions of pH and electrical charge of wet web and silica sol.

Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil

  • Bahrami, Reza;Khayat, Navid;Nazarpour, Ahad
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.103-113
    • /
    • 2020
  • Gypsiferous soils classified as problematic soils due to the dissolution of gypsum. Presence of gypsum in the soils texture subjected to steady flow can cause serious damages for the buildings, roads and water transmission canals. Therefore, researchers have conducted a series of physical, mechanical and microstructural laboratory tests to study the effect of gypsum leaching on the geotechnical properties of a lean clay containing 0%, 3%, 6%, 9%, 12%, and 15% raw gypsum. In addition, a combination of two nano-chemical stabilizers named Terrasil and Zycobond was used in equal proportions to stabilize the gypsiferous clayey samples. The results indicated that gypsum leaching considerably changed the physical and mechanical properties of gypsiferous soils. Further, adding the combination of Terrasil and Zycobond nano-polymeric stabilizers to the gypsiferous soil led to a remarkable reduction in the settlement drop, compressibility, and electrical conductivity (EC) of the water passing through the specimens, resulting in improving the engineering properties of the soil samples. The X-ray diffraction patterns indicate that stabilization by terrasil and zycobond causes formation of new peaks such as CSH and alteration of pure soil structure by adding raw gypsum. Scanning electron microscope (SEM) images show the denser texture of the soil samples due to chemical stabilization and decrease of Si/Al ratio which indicates by Energy dispersive X-ray (EDS) interpretation, proved the enhance of shear strength in stabilized samples.

Electrical Conductivity of Polypyrrole/Copolyester Composite Films. 1. Composite Films Prepared from $FeCl_3$/Copolyester Solution

  • Lee, Seong-Mo;Baik, Doo-Hyun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.49-52
    • /
    • 1998
  • Preparation of conducting Polymer composites by Polymerizing Polypyrrole in thermoplastic polymer matrices has been studied by many researchers in order to enhance the stability and the Physical Properties of polypyrrole. In the previous study4 we examined the effects of the ionic group content and the copolyester molecular structures on the electrical conductivity of conductivity of polypyrrole(PPy)/copolyester composite films. (omitted)

  • PDF

탄소나노튜브 액츄에이터의 이론적 모델링 (Analytical Modeling of Carbon Nanotube Actuators)

  • 염영일;박철휴
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.