DOI QR코드

DOI QR Code

Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil

  • Bahrami, Reza (Department of Civil Engineering, Najafabad Branch, Islamic Azad University) ;
  • Khayat, Navid (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University) ;
  • Nazarpour, Ahad (Department of Geology, Ahvaz Branch, Islamic Azad University)
  • Received : 2019.10.25
  • Accepted : 2020.09.17
  • Published : 2020.10.25

Abstract

Gypsiferous soils classified as problematic soils due to the dissolution of gypsum. Presence of gypsum in the soils texture subjected to steady flow can cause serious damages for the buildings, roads and water transmission canals. Therefore, researchers have conducted a series of physical, mechanical and microstructural laboratory tests to study the effect of gypsum leaching on the geotechnical properties of a lean clay containing 0%, 3%, 6%, 9%, 12%, and 15% raw gypsum. In addition, a combination of two nano-chemical stabilizers named Terrasil and Zycobond was used in equal proportions to stabilize the gypsiferous clayey samples. The results indicated that gypsum leaching considerably changed the physical and mechanical properties of gypsiferous soils. Further, adding the combination of Terrasil and Zycobond nano-polymeric stabilizers to the gypsiferous soil led to a remarkable reduction in the settlement drop, compressibility, and electrical conductivity (EC) of the water passing through the specimens, resulting in improving the engineering properties of the soil samples. The X-ray diffraction patterns indicate that stabilization by terrasil and zycobond causes formation of new peaks such as CSH and alteration of pure soil structure by adding raw gypsum. Scanning electron microscope (SEM) images show the denser texture of the soil samples due to chemical stabilization and decrease of Si/Al ratio which indicates by Energy dispersive X-ray (EDS) interpretation, proved the enhance of shear strength in stabilized samples.

Keywords

Acknowledgement

The authors are grateful to Advanced Soil Mechanics Laboratory of Azad University of Ahvaz for providing laboratory space and facilities.

References

  1. Aderinola, O. and Nnochiri, E. (2017), "Stabilizing lateritic soil using Terrasil solution", J. Civ. Eng., 12(1), 19-28. https://doi.org/10.1515/sspjce-2017-0002.
  2. Ahmad, F., Said, M.A. and Najah, L. (2012), "Effect of leaching and gypsum content on properties of gypseous soil", Int. J. Sci. Res. Publ., 2(9), 1-5.
  3. Alateya, H.H.M. (2013), "Influence of the use of additives on the properties of compacted gypseous soils", Jordan J. Civ. Eng., 7(4), 392-400.
  4. Aldaood, A., Bouasker, M. and Al-Mukhtar, M. (2014), "Geotechnical properties of lime-treated gypseous soils", Appl. Clay Sci., 88-89, 39-48. https://doi.org/10.1016/j.clay.2013.12.015.
  5. Alsafi, S., Farzadnia, N., Asadi, A. and Huat, B. (2017), "Collapsibility potential of gypseous soil stabilized with fly ash geopolymer; characterization and assessment", Constr. Build. Mater., 137, 390-409. https://doi.org/10.1016/j.conbuildmat.2017.01.079.
  6. Al-Layla, M.T. and Alsaffar, Q. (2014), "Improving the engineering properties of the gypseous soil using dynamic compaction method", Al-Rafidain Eng., 22(2), 109-122.
  7. AL-Numani, H.N.T. (2010), "Improvement of the mechanical properties of gypseous soil by additives", Al-Qadisiya J. Eng. Sci., 3(3), 287-296.
  8. Al-Obaidy, N., Jefferson, I. and Ghataora, G. (2016), "Treatment of Iraqi collapsible soil using encased stone columns", Jap. Geotech. Soc., 2, 564-569. https://doi.org/10.3208/jgssp.IRQ-01.
  9. Al-Zubaydi, A. H. (2011), "Strength and erosion of lime stabilized gypseous soil under different flow conditions", Al-Rafidain Eng. J., 19(2), 12-28. http://doi.org/10.33899/rengj.2011.27331.
  10. Arakelyan, E.A. (1986), "Characteristics of the determination of the physical properties of gypsum soils", Soil Mech. Found. Eng., 23(1), 27-29. https://doi.org/10.1007/BF01743393
  11. Awn, S.H.A., Abd-Alsattar, W. and Abbas, H.O. (2012), "Improvement of gypseous soil by compaction and addition of cement", J. Eng. Develop., 16(2), 74-88.
  12. Aziz, H.Y. and Ma, J. (2011), "Gypseous soil improvement using fuel oil", Int. J. Civ. Environ. Eng., 5(3), 238-242.
  13. Boyadgiev, T.G. and Verheye, W.H. (1996), "Contribution to a utilitarian classification of gypsiferous soil", Geoderma, 74(3), 321-338. https://doi.org/10.1016/S0016-7061(96)00074-2.
  14. Casby-Horton, S., Herrero, J. and Rolong, N.A. (2015), Gypsum Soils - Their Morphology, Classification, Function, and Landscapes, in Advances in Agronomy, Elsevier Ltd, Amsterdam, The Netherlands.
  15. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  16. Canakci, H., Aziz, A. and Celik, F. (2015), "Soil stabilization of clay with lignin, rice husk powder and ash", Geomech. Eng., 8(1), 67-79. https://doi.org/10.12989/gae.2015.8.1.067.
  17. Ewa, D., Egbe, E., Akeke, G. and Al, E. (2016), "Effects of nanochemical on geotechnical properties of Ogoja subgrad", J. Rese. Inform. Civ. Eng., 13(1), 820-829.
  18. Fattah, M.Y., Al-Ani, M.M. and Al-Lamy, M.T.A. (2014), "Studying collapse potential of gypseous soil treated by grouting", Soils Found., 54(3), 396-404. https://doi.org/10.1016/j.sandf.2014.04.008.
  19. Fattah, M.Y., al-Musawi, H.H.M. and Salman, F.A. (2012), "Treatment of collapsibility of gypseous soils by dynamic compaction", Geotech. Geol. Eng., 30(6), 1369-1387. https://doi.org/10.1007/s10706-012-9552-z.
  20. Ibrahim, S.F., Dalaly, N.K. and Mahmood, G.A.A. (2016), "Studies on improvement of properties of gypseous soils", Jap. Geotech. Soc., 2, 570-575. https://doi.org/10.3208/jgssp.IRQ-04.
  21. Ibrahim, A.N. and Schanz, T. (2017), "Improvement of gypsiferous soil strength by silicone oil", Soil Mech. Found. Eng., 54(2), 117-121. https://doi.org/10.1007/s11204-017-9443-7.
  22. Jha, A.K. and Sivapullaiah, P.V. (2018), "Potential of fly ash to suppress the susceptible behavior of lime-treated gypseous soil", Soils Found., 58(3), 654-665. https://doi.org/10.1016/j.sandf.2018.02.024.
  23. Jha, A.K. and Sivapullaiah, P.V. (2016a), "Role of gypsum on microstructure and strength of soil", Environ. Geotech., 3(2), 78-89. https://doi.org/10.1680/envgeo.13.00084.
  24. Jha, A.K. and Sivapullaiah, P.V. (2016b), "Volume change behavior of lime treated gypseous soil-influence of mineralogy and microstructure", Appl. Clay Sci., 119, 202-212. https://doi.org/10.1016/j.clay.2015.09.017.
  25. Johnson, R. and Rangaswamy, K. (2015), "Improvement of soil properties as a road base material using nano chemical solution", Proceedings of the 50th Indian Geotechnical Conference (IGC), Pune, Maharashtra, India, December.
  26. Kadhim, A.J. (2014), "Stabilization of gypseous soil by cutback asphalt for roads construction", J. Eng. Develop., 18(1), 46-67.
  27. Kalantari, B., Prasad, A. and Huat, B. (2010), "Peat stabilization using cement, polypropylene and steel fibres", Geomech. Eng., 2(4), 321-335. http://doi.org/10.12989/gae.2010.2.4.321.
  28. Kalyani, V.T.D., Begum, A.S., Prasad, D.S.V. and Raju, V.R.P. (2018), "A study on geotechnical properties of expansive soil treated with rice husk ash and Terrasil", Int. J. Eng. Sci., 7(8), 93-99. http://doi.org/10.9790/1813-0708039399.
  29. Kargar, S., Javadi, A. and Estabragh, A.R. (2014), "Investigation on the mechanical properties of gypsum soil", Proc. Inst. Civ. Eng. Constr. Mater., 167(5), 251-257. https://doi.org/10.1680/coma.12.00045.
  30. Karim, H.H., Samueel, Z.W. and Karim, H.K. (2016), "Iraqi gypseous soil stabilized by ordinary and encased stone columns", Int. J. Civ. Eng. Technol., 7(6), 179-192.
  31. Karim, H.H., Samueel, Z.W. and Karim, H.K. (2017), "Performance of geosynthetic-reinforced gypseous soil", Int. J. Eng. Sci. Manage. Res., 4(3), 73-85.
  32. Kuttah, D. and Sato, K. (2015), "Review on the effect of gypsum content on soil behavior", Transport. Geotech., 4, 28-37. https://doi.org/10.1016/j.trgeo.2015.06.003.
  33. Kwon, Y., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
  34. Meeravali, K., Ruben, N. and Rangaswamy, K. (2020), "Stabilization of soft-clay using nanomaterial: Terrasil", Mater. Today Proc., 27, 1030-1037. https://doi.org/10.1016/j.matpr.2020.01.384.
  35. Mirzababaei, M. (2007), "Assessment of clay soil fabric using scanning electron microscope (SEM)", Proceedings of the International Conference on Soil and Rock Engineering, Colombo, Sri Lanka, August.
  36. Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Soltani, A. and Khayat, N. (2018), "Stabilization of soft clay using short fibers and poly vinyl alcohol", Geotext. Geomembranes, 46(5), 646-655. https://doi.org/10.1016/j.geotexmem.2018.05.001.
  37. Moayyeri, N., Oulapour, M. and Haghighi, A. (2019), "Study of geotechnical properties of a Gypsiferous soil treated with lime and silica fume", Geomech. Eng., 17(2), 195-206. https://doi.org/10.12989/gae.2019.17.2.195.
  38. Mrudul, U.V., Damodariya, S.M. and Parmar, N.B. (2016), "Laboratory investigation of soil stabilized using terrasil", Int. J. Sci. Res. Develop., 4(3), 1217-1221.
  39. Mulla, A.A. and Guptha, K.G. (2019), "Comparative study and laboratory investigation of soil stabilization using Terrasil and Zycobond", Proceedings of the Sustainable Construction and Building Materials, Singapore.
  40. Namiq, L. and Nashat, I. (2011), "Influence of leaching on volume change of a gypseous soil", Proceedings of the Geo-Frontiers Congress, Dallas, Texas, U.S.A., March.
  41. Olaniyan, O.S. and Ajileye, V.O. (2018), "Strength characteristics of lateritic soil stabilized with terrasil and zycobond nano chemicals", Int. J. Civ. Eng., 7(2), 1-12.
  42. Padmavathi, V., Nirmala Peter, E.C., Rao, P.N. and Padmavathi, M. (2018), "Stabilization of soil using Terrasil, Zycobond and cement as admixtures" Proceedings of the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt, October.
  43. Pandagre, A.K. and Jain, R. (2017), "Effect of terrasil on geotechnical properties of expansive soil mixed with lime", Int. J. Res. Appl. Sci. Eng. Technol., 5(I), 528-533.
  44. Patel, N.A., Mishra, C. and Pancholi, V. (2015a), "Scientifically surveying the usage of terrasil chemical for soil stabilization", Int. J. Res. Advent Technol., 3(6), 77-84.
  45. Patel, N.A., Mishra, C.B., Parmar, D.K. and Gautam, S.B. (2015b) "Subgrade soil stabilization using chemical additives", Int. Res. J. Eng. Technol., 2(4), 1089-1095.
  46. Qureshi, M., Chang, I. and AlSadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785.
  47. Raghavendra, T., Rohini, B., Divya, G., Abdul Sharooq, S. and Kalyanbabu, B. (2018), "Stabilization of black cotton soil using terrasil and zycobond", Int. J. Creative Res. Thoughts, 6(1), 300-303.
  48. Rathod, R.G. (2017), "Efficient way to improve subgrade property of pavement by chemical stabilization", Int. J. Eng. Res. Appl., 7(1), 83-96. https://doi.org/10.9790/9622-0701028396.
  49. Ravi Shankar, A.U. and Panditharadhya, B.J. (2017), "Laboratory investigation of lateritic soil treated with Terrasil and cement", Proceedings of the Indian Geotechnical Conference, Guwahati, India, December.
  50. Razouki, S., Kuttah, D.K., Al-Damluji, O. and Nashat, I. (2012), "Improving fine-grained gypsiferous soil by increased compaction", Int. J. Pavement Eng., 13(1), 32-38. https://doi.org/10.1080/10298436.2011.563850.
  51. Razouki, S. and Ibrahim, A.N. (2017), "Improving the resilient modulus of a gypsum sand roadbed soil by increased compaction", Int. J. Pavement Eng., 20(4), 432-438. https://doi.org/10.1080/10298436.2017.1309190.
  52. Rohith, M.S.R., Kumar, R.S., Paul, W. and KumaraSwamy, N. (2018), "A study on the effect of stabilizers (zycobond & terrasil) on strength of subgrade on BC soil", Indian J. Sci. Res., 17(2), 86-92.
  53. Roshni, S. and Jeyapriya, S.P. (2017), "Experimental study on the use of nano chemical and cement in the modification of subgrade", Int. J. Sci. Eng. Res., 8(3), 1868-1872.
  54. Schanz, T. and Karim, H. (2018), "Geotechnical characteristics of some Iraqi gypseous soils", Proceedings of the 3rd International Conference on Buildings, Construction and Environmental Engineering, Sharm el-Shiekh, Egypt, October.
  55. Selvaraj, A., Dhanaiyendran, R., Jeevan, R., Karthick, S. and Dhevasenaa, M.E. (2018), "Laboratory investigation of soil stabilization using Terrasil with cement", Int. J. Trendy Res. Eng. Technol., 2(3), 6-9.
  56. Shooshpasha, I. and Alijani Shirvani, R. (2015), "Effect of cement stabilization on geotechnical properties of sandy soils", Geomech. Eng., 8(1), 17-31. http://doi.org/10.12989/gae.2015.8.1.017.
  57. Singh, N. (2019), "Stabilization of expansive soil using Terrasil and micro micro silica fume: A review", J. Appl. Sci. Comput., 6(12), 126-129.
  58. Singh, S. (2017a), "Microstructural analysis of clay after treatment with terrasil-a nano chemical", Int. J. Sci. Eng. Res., 8(12), 42-47.
  59. Singh, S., Bogireddy, C., Solanki, C.H. and Vasanwala, S.A. (2017b), "Experimental investigation and microstructural analysis of nano-chemically treated clayey soil", Proceedings of the Indian Geotechnical Conference, Guwahati, India.
  60. Taha, M., Al-Obaidi, A. and Taha, O. (2008), "The use of liquid asphalt to improve gypseous soils", Al-Rafidain Eng. J., 16(1), 13-29.
  61. Taha, M.R., Alsharef, J M.A., Khan, T.A., Aziz, M. and Gaber, M. (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559.
  62. Thomas, A., Tripathi, R., Yadu, L. and Roy, S. (2016), "Soil stabilisation using Terrasil", Int. J. Earth Sci. Eng., 9, 1049-1052.

Cited by

  1. Laboratory Investigation on Physical-Mechanical Characteristics and Microstructure of a Clayey Gypsiferous Soil in the Presence of Chemical Accelerator vol.25, pp.9, 2020, https://doi.org/10.1007/s12205-021-1622-4