• Title/Summary/Keyword: photo-detector

Search Result 196, Processing Time 0.027 seconds

Remote Water Quality Warning System Using Water Fleas

  • Park Se-Hyun;Kim Eung-Soo;Park Se-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Hardware for monitoring the water quality using water fleas is developed. Water flea is a frequently used biological sensor for monitoring the water quality. Water fleas quickly respond to the incoming toxic water by changing their activity when they are exposed. By measuring the activity of water fleas, the incoming toxic water is instantly detected. So far the measurement of activity of water fleas has been done with a system equipped with both a light source of LED and a light detector of photo transistor. Water flea itself is, however, sensitive to light resulting in incorrect response and the system has two inconvenient separate parts of the light source and the detector. This paper suggests a system using a CCD camera instead of a light source and a detector. The suggested system processes the image data from the CCD camera in real time without any delay. The developed system becomes a part of the remote water monitoring embedded system.

Atomic Layer Deposition of Nitrogen Doped ZnO and Application for Highly Sensitive Coreshell Nanowire Photo Detector

  • Jeong, Han-Eol;Gang, Hye-Min;Cheon, Tae-Hun;Kim, Su-Hyeon;Kim, Do-Yeong;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.26.1-26.1
    • /
    • 2011
  • We investigated the atomic layer deposition (ALD) process for nitrogen doped ZnO and the application for n-ZnO : N/p-Si (NW) coaxial hetero-junction photodetectors. ALD ZnO:N was deposited using diethylzinc (DEZ) and diluted $NH_4OH$ at $150^{\circ}C$ of substrate temperature. About 100~300 nm diameter and 5 um length of Si nanowires array were prepared using electroless etching technique in 0.108 g of $AgNO_3$ melted 20 ml HF liquid at $75^{\circ}C$. TEM images showed ZnO were deposited on densely packed SiNW structure achieving extraordinary conformality. When UV (360 nm) light was illuminated on n-ZnO:N/p-SiNW, I-V curve showed about three times larger photocurrent generation than film structure at 10 V reverse bias. Especially, at 660 nm wave length, the coaxial structure has 90.8% of external quantum efficiency (EQE) and 0.573 A/W of responsivity.

  • PDF

Performance Test and Analysis of the Laser Radar System Prototype for Mapping Application (맵핑용 레이저 레이더 시스템 실험실 시제의 성능시험 및 분석)

  • Jo, Min-Sik;Lee, Chang-Jae;Kang, Eung-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.197-202
    • /
    • 2012
  • We present the results of performance test and analysis of a laser radar system prototype for mapping applications. The laser radar system consisting of fiber laser and avalanche photo-detector and other related component modules was designed and manufactured. The laser radar system now has the status of a prototype for the testing of laboratory performance. Main performance parameters of the system such as laser source characteristics, range accuracy, extinction ratio, and false alarm rate were experimentally measured and the results were analyzed. It confirmed that the laser radar system prototype is performing at a proper level.

Level Controller On Optical Signal of 40 Channel (40 채널 광 신호 레벨 제어기)

  • Yeom Jin-su;Hur Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.220-223
    • /
    • 2006
  • In this paper, we studied about the level controller of optical signal with 40 channels by 4 VOA(Variable Optical Attenuator) with 12 channels. Total 8 microprocessors control 40 chamois for control of optical signal level so that a microprocessor controls 5 channels each. Moreover a microprocessor was added to communicate with outside and transfer instruction to each microprocessor. The output optical signal is measured and VOA is controlled as a result of it. The VOA outputs is inputted into PD(Photo Detector) at once. We could control multi-channel optical signals simply like this.

Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products

  • Roshani, Mohammadmehdi;Phan, Giang;Faraj, Rezhna Hassan;Phan, Nhut-Huan;Roshani, Gholam Hossein;Nazemi, Behrooz;Corniani, Enrico;Nazemi, Ehsan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1277-1283
    • /
    • 2021
  • It is important for operators of poly-pipelines in petroleum industry to continuously monitor characteristics of transferred fluid such as its type and amount. To achieve this aim, in this study a dual energy gamma attenuation technique in combination with artificial neural network (ANN) is proposed to simultaneously determine type and amount of four different petroleum by-products. The detection system is composed of a dual energy gamma source, including americium-241 and barium-133 radioisotopes, and one 2.54 cm × 2.54 cm sodium iodide detector for recording the transmitted photons. Two signals recorded in transmission detector, namely the counts under photo peak of Americium-241 with energy of 59.5 keV and the counts under photo peak of Barium-133 with energy of 356 keV, were applied to the ANN as the two inputs and volume percentages of petroleum by-products were assigned as the outputs.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

Decomposition of Gas-Phase Benzene on TiO2 Coated Alumina Balls by Photocatalytic Reaction (이산화티탄이 코팅된 알루미나 볼에서 광촉매 반응에 의한 기상벤젠의 분해)

  • Lee Nam-Hee;Jung Sang-Chul;Sun Il-Sik;Cho Duk-Ho;Shin Seung-han;Kim Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.407-412
    • /
    • 2004
  • Photo decomposition of gas phase benzene by $TiO_2$ thin films chemically deposited on alumina balls were investigated under UV irradiation. Photo decomposition rates were measured in real time during the reaction using a photo ionization detector, which ionizes C-H bonding of benzene molecules and then converts into volatile organic compounds (VOCs) concentrations. From the measuring results, the VOCs concentration increased instantly when IN irradiated because C-H bonds of benzene molecules strongly absorbed on the surface of $TiO_2$ films before the IN irradiation was destroyed by photo decomposition. After that, the VOCs concentration decreased with increasing surface area of $TiO_2$ and reaction time under the IN irradiation. At the optimal conditions for the photo decomposition of gas phase benzene, the reaction rate of the photo decomposition for high concentrations (over 60 ppm) was slow but that of relatively low concentration (under 60 ppm) was fast, due to limited surface area of $TiO_2$ thin films for the reaction. Thus, it is concluded that the photo decomposition rate was mainly affected by the surface area of $TiO_2$ or absorption reaction.

Fabrication and Its Characteristics of HgCdTe Infrared Detector (HgCdTe를 이용한 Infrared Detector의 제조와 특성)

  • 김재묵;서상희;이희철;한석룡
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • HgCdTe Is the most versatile material for the developing infrared devices. Not like III-V compound semiconductors or silicon-based photo-detecting materials, HgCdTe has unique characteristics such as adjustable bandgap, very high electron mobility, and large difference between electron and hole mobilities. Many research groups have been interested in this material since early 70's, but mainly due to its thermodynamic difficulties for preparing materials, no single growth technique is appreciated as a standard growth technique in this research field. Solid state recrystallization(SSR), travelling heater method(THM), and Bridgman growth are major techniques used to grow bulk HgCdTe material. Materials with high quality and purity can be grown using these bulk growth techniques, however, due to the large separation between solidus and liquidus line on the phase diagram, it is very difficult to grow large materials with minimun defects. Various epitaxial growth techniques were adopted to get large area HgCdTe and among them liquid phase epitaxy(LPE), metal organic chemical vapor deposition(MOCVD), and molecular beam epitaxy(MBE) are most frequently used techniques. There are also various types of photo-detectors utilizing HgCdTe materials, and photovoltaic and photoconductive devices are most interested types of detectors up to these days. For the larger may detectors, photovoltaic devices have some advantages over power-requiring photoconductive devices. In this paper we reported the main results on the HgCdTe growing and characterization including LPE and MOCVD, device fabrication and its characteristics such as single element and linear array($8{\times}1$ PC, $128{\times}1$ PV and 4120{\times}1$ PC). Also we included the results of the dewar manufacturing, assembling, and optical and environmental test of the detectors.

  • PDF

Implementation of Real-time Measurement Hardware for Activity of Water Flea and Remote Monitoring System using CCD Camera (CCD 카메라를 사용한 물벼룩의 실시간 활동량 측정 하드웨어와 원격 모니터링 시스템 구현)

  • Park, Se-Huyn;Park, Se-Hoon;Kim, Eung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.30-37
    • /
    • 2007
  • Hardware for monitoring the water quality is developed using water fleas. Water flea is a frequently used biological sensor for monitoring the water quality. Water fleas quickly respond to the incoming toxic water by changing their activity when they are exposed. By measuring the activity of water fleas, the incoming toxic water is instantly detected in real time. So far the measurement of activity of water fleas has been done with a system equipped with a light source of LED and a light detector of photo transistor. Water flea itself is, however, sensitive to light resulting in incorrect response and the system has two inconvenient separate parts of the light source and the detector. This paper suggests a system using a CCD camera instead of a light source and a detector. The suggested system processes the image data from the CCD camera in real time without any delay. The developed system becomes a part of the remote water monitoring embedded system.

The Study of Sputtered SiGe Thin Film Growth for Photo-detector Application (광검출기 응용을 위하여 스퍼터된 미세결정 SiGe 박막성장 연구)

  • Kim, Do-Young;Kim, Sun-Jo;Kim, Hyung-Jun;Han, Sang-Youn;Song, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.439-444
    • /
    • 2012
  • For the application of photo-detector as active layer, we have studied how to deposit SiGe thin film using an independent Si target and Ge target, respectively. Both targets were synthesized by purity of 99.999%. Plasma generators were generated by radio frequency (rf, 13.56 MHz) and direct current (dc) power. When Ge and Si targets were sputtered by dc and rf power, respectively, we could observe the growth of highly crystalline Ge thin film at the temperature of $400^{\circ}C$ from the result of raman spectroscopy and X-ray diffraction method. However, SiGe thin film did not deposit above method. Inversely, we changed target position like that Ge and Si targets were sputtered by rf and dc power, respectively. Although Ge crystalline growth without Si target sputtering deteriorated considerably, the growth of SiGe thin film was observed with increase of Si dc power. SiGe thin film was evaluated as microcrystalline phase which included (111) and (220) plane by X-ray diffraction method.