• Title/Summary/Keyword: phosphatase 활성도

Search Result 577, Processing Time 0.038 seconds

Effects of Eisenia bicyclis Extracts on the Proliferation and Activity of Osteoblasts and Osteoclasts (대황 추출물이 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Kim, Seoyeon;Jeon, Myeong-Jeong;Cheon, Jihyeon;Lee, Sang-Hyeon;Kong, Changsuk;Kim, Yuck Yong;Yu, Ki Hwan;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.297-303
    • /
    • 2014
  • The effects of Eisenia bicyclis extracts on osteoblast differentiation and osteoclast formation were investigated. The proliferation of MC3T3-E1 osteoblastic cells was tested in an MTT assay. Treatment with E. bicyclis ethanol extract increased cell proliferation by approximately 128% at a concentration of 10 ${\mu}g/ml$. The ALP activities in the MC3T3-E1 cells was 179% higher when the E. bicyclis ethanol extract was processed at a concentration of 50 ${\mu}g/ml$. The proliferation of RAW 264.7 osteoclastic cells decreased significantly in response to treatment with the E. bicyclis extracts. Moreover, the proliferation of the RAW 264.7 osteoclastic cells treated with E. bicyclis hot water extract decreased by nearly 80%. In addition, the E. bicyclis extract reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from osteoclastic RAW 264.7 cells. These results indicate that E. bicyclis extracts have an anabolic effect on bone through the promotion of osteoclast differentiation and suggest that the extracts could be used in the treatment of common metabolic bone diseases.

Effects of Solidago virga-aurea var. gigantea Miq. Root Extracts on the Activity and Differentiation of MC3T3- E1 Osteoblastic Cell (미역취(Solidago virga-aurea var. gigantea Miq.) 뿌리 추출물이 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Park, Jung-Hyun;Lee, Ji-Won;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.929-936
    • /
    • 2005
  • The purpose of this study was to examine the ability of alkaline phosphatase (ALP) synthesis of MC3T3-E1 cells when above edible sources, Solidago virga-aurea var. gigantea Miq. root (SVR) extracts, were supplimented. MC3T3-E1 cells were cultured with $\alpha-MEM$(vehicle control), dexamethasone and genestein (positive control), and SVR extracts for 27 days. The effects of SVR MeOH extracts and its fractions on cell proliferation were measured by MTT assay. At 10, 100${\mu}g/mL$ of SVR methanol extract treated, that were elevated of cell proliferation to 140 and $120\%$ via vehicle control, respectively. And then ALP synthesis was measured by spectrophotometer for enzyme activity and by naphthol AS-BI staining for morphometry at 3, 9, 18, and 27th day. As the results, every extracts and fractions were promoted ALP activity by time course at 1, 10, 100${\mu}g/mL$, except n-hexane and chloroform fractions. Remarkably, the MeOH extracts were increased ALP activity more than 4.4 times compared with vehicle control, 2.2 times via positive control at 27th day (p<0.05). The SVR MeOH extracts treated cells, especially at a concentration of 10${\mu}g/mL$, showed remarkably higher than vehicle-treated control cells of mineralization which were checked by Alizarin red staining. These results indicate that SVR methanol extract have an induction ability of proliferation and differentiation on osteoblast.

ROS Scavenging Effect and Cell Viability of Opuntia humifusa Extract on Osteoblastic MC3T3-E1 Cells (천년초 추출물이 조골세포의 증식과 ROS소거능에 미치는 영향)

  • Hwang, Hyun-Jung;Jung, Bok-Mi;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1752-1760
    • /
    • 2011
  • In this study, the effect of the Opuntiahumifusa extracts on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and ROS level of a cell was investigated using an osteoblast. Opuntiahumifusawas separated intoOpuntiahumifusapeel (OH-P), seed (OH-Se) and stem (OH-St).These were subjected to extraction by using hot water and ethanol. The proliferation of the MC3T3-E1 osteoblastic cells that were treated with OH-Se water extract were increased by approximately 120%. Regarding the effects of OH-Se on ALP activity, the $50{\mu}g/ml$ ethanol extract group showed the highest activity. The synthesis of collagen increased significantly in response to treatment with OH-Se water extract. The ROS scavenging effects of Opuntiahumifusawere investigated for involvement of oxidativedamage, cell culture and staining. Also, when OH-Se water extract $100{\mu}g/ml$ was added, the ROS level decreased by 54%. These results indicate that Opuntiahumifusa extracts have an anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.

Soil Microbial Community Analysis using Soil Enzyme Activities in Red Pepper Field Treated Microbial Agents (토양효소활성을 이용한 미생물제제 처리 고추경작지의 토양미생물군집 분석)

  • Kim, Yo-Hwan;Lim, Jong-Hui;An, Chang-Hwan;Jung, Byung-Kwon;Kim, Sang-Dal
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Increasing concerns over green farming technology, plant growth promoting rhizobacterium (PGRP) having growth promoting as well as plant disease suppressing properties was recently preferred to use for biological control of plant pathogens infecting plant. We measured the influence of the selected microbial consortium agents-a mixture of PGPR strains-, commercial bio-fungicide, and chemical pesticides on soil microbial community in red pepper field. The activities of soil enzyme such as dehydrogenase, urease, phosphatase, ${\beta}$-glucosidase, and cellulase were analyzed to investigate that of soil microbial community. We also measured plant length, main stem, stem diameter, number of branches and yields of red-pepper in order to observe the red pepper growth promotion. The results of measuring enzyme activities were dehydrogenase 3.5584 ${\mu}g$ TPF $g^{-1}h^{-1}$, urease 15.8689 ${\mu}g$ $NH_4{^-}N$ $g^{-1}h^{-1}$, phosphatase 0.5692 ${\mu}g$ PNP $g^{-1}h^{-1}$, ${\beta}$-glucosidase 2.4785 ${\mu}g$ PNP $g^{-1}h^{-1}$, and cellulase 86.1597 ${\mu}g$ glucose $g^{-1}h^{-1}$ in the soil treated with the microbial consortium agents, so it came out to be very active in the soil. Observing the growth of red-peppers, the main-stem length and the stem diameter were 6.1% and 8.1% higher in the soil treated with the selected microbial consortium agent than the chemical pesticides. After harvesting, yields were 7.3% higher in the soil treated with selected microbial consortium agents than the chemical pesticides. These results showed that microbial consortium agents contribute to increasing soil microbial diversity, growth promoting, and yield of red pepper.

Protective Effects of Branched-chain Amino Acid (BCAA)-enriched Corn Gluten Hydrolysates on Ethanol-induced Hepatic Injury in Rats (알코올성 간 손상을 유발한 흰쥐에 대한 고 분지아미노산 함유 옥수수 단백가수물의 간 기능 보호효과)

  • Chung, Yong-Il;Bae, In-Young;Lee, Ji-Yeon;Chun, Hyang-Sook;Lee, Hyeon-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.706-711
    • /
    • 2009
  • Hepatoprotective effects of corn gluten hydrolysates (CGH) were investigated in rats orally treated with ethanol (30%(v/v), 3 g/kg body weight/day) for 4 weeks. Six-week old Sprague-Dawley male rats were divided into four dietary groups: normal diet (N), alcohol diet (E), E+CGH 1% diet (CGH-1%), and E+CGH 3% diet (CGH-3%). Body weights and liver indices were not significantly different among the four groups. However, food intakes were lower in the CGH groups than in the normal group (p<0.05). The administration of CGH significantly reduced serum alkaline phosphatase activity by 30% compared to the alcohol diet group. Among the antioxidative enzymes assessed, catalase activity was significantly decreased by 79% in the CGH diet groups compared to the alcohol diet group. In comparison to the alcohol-treated group, aldehyde dehydrogenase activity was increased by 20%, while microsomal ethanol oxidizing system activity was decreased by 20% in the CGH-treated groups. Furthermore, the area under the curve of the blood acetaldehyde concentration versus time profile after the administration of ethanol was significantly lower for the CGH rats than for the ethanol or asparaginic acid treated groups. Thus, CGH seems to offer beneficial effects by protecting against ethanol-induced hepatotoxicity by improving the acetaldehyde-related metabolizing system.

Effect of Pine (Pinus densiflora) Needle Extracts on Synthesis of Collagen in Osteoblastic MC3T3-E1 Cells (적송잎 추출물이 조골세포의 collagen 합성에 미치는 영향)

  • Jeon, Min-Hee;Kim, Young-Kyoung;Park, Yong-Soo;Hwang, Hyun-Jung;Kim, Sung-Gu;Lee, Sang-Hyeon;Choi, In-Soon;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.607-613
    • /
    • 2010
  • Osteoporosis is a disease involving a decrease in bone mineral density and an increased risk of fractures. The MC3T3-E1 pre-osteoblastic cell line is a well-accepted model of osteogenesis in vitro. Pine needles have long been used as a traditional health-promoting medicinal food in Korea. In this study, MTT assay, the alkaline phosphatase (ALP) activity and collagen synthesis of osteoblast cells were investigated to determine the effects of pine needle extracts on cell proliferation and differentiation. Pine needle extracts were prepared using hexane, ethanol and water. The effects of the pine needle extracts were examined by comparing the results with those of commercial agents, such as proanthocyanidin. The MC3T3-E1 cells exposed to proanthocyanidin showed increased proliferation in a concentration-dependent manner. The cells exposed to the hexane extract showed a similar increase in proliferation to that observed with proanthocyanidin. The hexane extract showed the highest ALP activity. Moreover, a supplement of pine needle extracts induced collagen synthesis in MC3T3-E1 cells. The pine needle extract produced the highest level of collagen synthesis at concentrations of $10{\sim}50\;{\mu}g/ml$. These results indicate that pine needle extracts have an anabolic effect on bone by promoting osteoblastic differentiation, and may be used in the treatment of common metabolic bone diseases.

Effect of water extract and distillate from the mixture of black goat meat and medicinal herb on osteoblast proliferation and osteoclast formation (흑염소와 약용식물 복합 증탕추출액 및 증류액이 조골세포 증식과 파골세포 형성에 미치는 영향)

  • Song, Hyo-Nam;Leem, Kang-Hyun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.48 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose: The effects of water extract and distillate from the mixture of black goat meat and medicinal herb on MG-63 osteoblast proliferation and mouse bone marrow derived osteoclast formation were investigated. Methods: Proximate composition, volatile basic nitrogen (VBN), mineral content, free amino acid composition and free fatty acid composition in black goat meat were determined. Water extract and distillate were prepared with three groups; goat meat only (BG-E, BG-D), six herbs added group (BG-E6, BG-D6), and eight herbs added group (BG-E8, BG-D8). Osteoblast proliferation, mineralization and calcium uptake activity of MG-63 cells were measured and tartrate resistant acid phosphatase activity of osteoclasts was analyzed. Results: Black goat meat had remarkably low fat and high level of calcium. Glutamic acid was the most abundant amino acid. Herbs added extract groups (BG-E6 and BG-E8) showed increased MG-63 cell proliferation in a concentration dependent manner, while all the distillates did not show the effect. All extracts and distillates showed significantly increased osteoblast mineralization depending on the concentration. In particular, herb added extract, BG-E6, increased 170.3% of control and the distillate of BG-D and BG-D6 increased up to 168.5% and 159.8%, respectively. Calcium uptake activities of all water extracts showed remarkable increase of BG-E6 and BG-E8 up to 615.5% and 628.1% of control, respectively. Ditillates had no effect except BG-D6. All water extracts significantly reduced the activity of tartrate-resistant acid phosphatase (TRAP) in osteoclasts derived from mouse bone marrow. Conclusion: Combination of black goat meat and medicinal herb increased the MG-63 cell proliferation and effectively inhibited osteoclast differentiation in both water extracts and distillate of them, which implies that they could be used as potent functional food materials for bone health.

The effect of dexamethasone on the gene expression of the bone matrix protein in the periodontal ligament cells (치주인대세포의 골기질 단백질 유전자 발현에 대한 Dexamethasone의 영향)

  • Chung, Ha-Bong;Park, Jin-Woo;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.445-456
    • /
    • 2002
  • The purpose of this study were to determine that dexamethasone(Dex) induces differentiation of periodontal ligament(PDL) cells to osteoblastic cells and to investigate expression of matrix Gla protein(MGP), which is one of bone matrix protein. The isolated human PDL cells and gingival fibroblasts were prepared and cultured. The fourth or sixth sub-passage cells were used in this experiments. control group, ascorbic acid and ${\beta}$-glycerophosphate treated group, ascorbic acid, ${\beta}$-glycerophosphate and l00nM Dex treated group, ascorbic acid, ${\beta}$-glycerophosphate, and 5 ${\mu}M$ Dex treated group were made for study. The results were as follows: Cellular morphological change of PDL cells according to time was investigated. At first, the cells exhibited confluent monolayer of spindle or polygonal appearance. The multilayer of cells were seen after 7 days of treatment. After 14 days, the cells lost polarity and were densely packed. The mineralized nodule formation was seen at 21 days in the only Dex treated PDL cell groups. In the gingival fibroblast groups and no Dex treated PDL cell groups, the mineralized nodule was not seen. The mineralized nodule formation of 5 ${\mu}M$ Dex treated group was higher than 100 nM Dex treated group. Alkaline phosphatase(ALP) activity was higher in the Dex treated PDL cell groups of 14 and 21 days than 0 and 7 days. MGP was expressed in the control and all experimental groups and the expression was constant at 0,7,14,21 day. The above results confirm that Dex is affected to differentiation of the PDL cells to osteoblastic or cementoblastic cells and has dose-dependent effect for mineralization. And, MGP is expressed in the PDL cells and is not affected to mineralization of PDL cells.

Effects of Pesticides on Soil Microflora -I. Effects of pesticides on Microflora, Soil Respiration and Enzyme Activity in Soil (농약(農藥)이 토양(土壤) 미생물상(微生物相)에 미치는 영향(影響)에 관(關)한 연구(硏究) -I. 살균(殺菌)·살충제(殺蟲劑)가 토양중(土壤中)의 미생물(微生物), 토양호흡(土壤呼吸) 및 효소활성(酵素活性)에 미치는 영향(影響))

  • Kim, Kwang Sick;Kim, Yong Woong;Lee, Myung Chul;Kim, Hyun Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.375-385
    • /
    • 1987
  • This study was carried out to investigate the effects of pesticides on soil respiration, microflora and enzymes in loam soil, and on pathogenic microorganisms in continuous pepper cropping soil. The results are summarized as follows. No significant effect of pesticides on soil respiration was shown, with the exception of propoxur which slightly increased at $10{\mu}g\;g^{-1}$ treatment. When pesticides were treated, the amount of soil microorganisms generally decreased at the early stage of incubation and the number of microflora was much more decreased at 60-day incubation. When pesticides were treated, the amount of soil enzyme activity was inhibited at the early stage of incubation and gradually recovered at the last stage of incubation. The amount of polygalacturonase activity was increased at the 20-and 30-day incubation in propoxur treatment plot. The amount of ${\beta}$-glucosidase and dehydrogenase activity was increased at 20-and 60-day incubation in carbofuran and acephate treatment plot. The amount of phosphatase activity was increased at 60-day incubation in propoxur and isoprocarb treatment plot. The amount of Fusarium generally decreased in continuous pepper cropping soil, with the exception of isoprocarb and acephate treatment plot which significantly increased. The amount of Pythium increased at 60-day incubation with the exception of captan treatment plot which significantly decreased.

  • PDF

Effect of Hijikia fusiforme Fractions on Proliferation and Differentiation in Osteoblastic MC3T3-E1 Cells (톳 분획물이 조골세포의 증식 및 분화에 미치는 영향)

  • Jeon, Min-Hee;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.300-308
    • /
    • 2011
  • Osteoporosis is a disease involving a decrease in bone mineral density and increased risk of fractures. Osteoblast and osteoclast activities are important for bone formation. The MC3T3-E1 osteoblastic cell line is a well-accepted model of osteogellsis in vitro. Hijikia fusiforme is a kind of edible brown seaweed that grows mainly in the Northwest Pacific region, including the countries of Korea, Japan and China, and it has been widely used as a medicinal and health food in Korea. In this study, by using osteoblasts, the effects of Hijikia fusiforme fractions on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and mineralization of cells were investigated. Hijikia fusiforme were subjected to fractionation by using hexane, methanol, butanol and aqueous. Proliferation of the MC3T3-E1 osteoblastic cells that were treated with Hijikia fusiforme fractions increased by approximately 120%. Regarding effects of Hijikia fusiforme fractions on ALP activity, 1 ${\mu}g$/ml butanol fraction showed the highest activity. The synthesis of collagen increased significantly in response to treatment with Hijikia fusiforme fractions, with the exception of the hexane fraction. Moreover, mineralization in the MC3T3-E1 cells that were treated with 100 ${\mu}g$/ml butanol fraction increased by 281%. Also, when 100 ${\mu}g$/ml aqueous fraction was added, mineralization increased by 240%. These results indicate that Hijikia fusiforme fractions have anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.