• Title/Summary/Keyword: phenol-formaldehyde resins

Search Result 30, Processing Time 0.027 seconds

Effect of Wood-Fiber Characteristics on Medium Density Fiberboard (MDF) Performance

  • Park, Byung-Dae;Kim, Yoon-Soo;Riedl, Bernard
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Four different sources of wood-fibers from Eucalyptus, Italian poplar, hemlock, and mixed species fibers were used to study the influence of their fiber characteristics on the performance of medium density fiberboard (MDF) panels bonded with both urea-formaldehyde (UF) and phenol-formaldehyde (PF) adhesives. Included fiber characteristics were fiber length, size distribution, bulk density, and acidity. Physical and mechanical properties of MDF panels manufactured by dry process using these different fibers were determined for the comparison of board performance. Two hardwood species had a large fraction of short fibers resulting in a higher bulk density while very long hemlock fibers had lower bulk density. Fiber acidity was revealed to strongly affect the internal bond (IB) strength of MDF panels bonded with UF resins. MDF panels made from mixed species fibers showed highest IB strength of all panels prepared. UF-bonded MDF panels showed poor dimensional stability. In conclusion, the present study showed that wood-fiber characteristics such as fiber length, bulk density, and acidity affect the performance of MDF boards, and also suggested that fiber characteristics be considered for MDF panel manufacture.

  • PDF

Physical Properties of Hybrid Poplar Flakeboard Bonded with Alkaline Phenolic Soy Adhesives

  • Yang, In;Kuo, Monlin;Myers, Deland J.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.66-75
    • /
    • 2005
  • Soybean-based adhesives have recently been reconsidered as alternatives to petroleum-based adhesives due to the uncertainty of availability of petrochemical products and the increased demand for wood adhesives. This study was conducted to investigate the adhesive properties of alkaline phenolic soy (APS) resin for hybrid poplar flakeboard. The APS resin was formulated by crosslinking an alkaline soy flour hydrolyzate with lab-prepared PF resin in the soy hydrolyzate to PF resin weight ratios of 70/30, 60/40, and 50/50. The APS resins were used to fabricate homogeneous hybrid poplar flakeboards with different resin solid levels (5%, 7%, and 9%), press temperatures (175 and $200^{\circ}C$), and press times of 8 and 10 minutes. The IB, wet MOR, and dimensional stability properties of board improved with increasing press time, press temperature, and PF level in APS resins. Increasing press time can be used to offset poor IB strength associated with a 9% resin solid level and the excessive moisture content in the mat. The following conditions were concluded to meet the requirements of the CSA standard for exterior-grade flakeboard: a 50% PF level, a 5% resin content, a $200^{\circ}C$ press temperature, and an 8 minute press time.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

A Study on the Synthesis of Acrylic Phenol Resins and Their Properties as a Paint (아크릴계 페놀수지 합성과 이를 이용한 도료의 물성연구)

  • Hwang, Sue In;Kim, Young Jin;Kim, Dong Kwon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.171-176
    • /
    • 2013
  • The need of volatile organic compound (VOC) free coating material has been increased to solve environmental problems such as the global warming. Nowadays, about 70~80% of coating materials used in the worldwide are a liquid type. Therefore, the development of non-solvent coating material that can minimize VOCs emissions is necessary to solve the global warming problem. In this study, acrylic monomers were added to develop non-solvent paints in order to improve disadvantages of the poor adhesion of a conventional phenolic resin caused by acidification. As a result, the blend resins of 2.818 Mpa phenol- formaldehyde resin/poly methyl methacrylate (PE/PMMA) has the best properties and performances for the adhesives.

Reaction Mechanism and Curing Characteristics of Chicken Feather-Based Adhesives and Adhesive Properties of Medium-Density Fiberboard Bonded with the Adhesive Resins (닭털로 제조한 접착제의 반응기작 및 경화 특성과 이를 이용하여 제조한 중밀도섬유판의 접착 특성)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.385-394
    • /
    • 2017
  • In this study, reaction mechanism and curing characteristics of adhesives formulated with NaOH- and $H_2SO_4$-hydrolyzed chicken feather (CF) and formaldehyde-based crosslinkers were investigated by FT-IR and DSC. In addition, adhesive properties and formaldehyde emission of medium-density fiberboards (MDF) applied with the adhesives were measured. CF-based adhesives having a solid content of 40% and over were very viscous at $25^{\circ}C$, but the viscosity reduced to $300{\sim}660m{\cdot}Pa{\cdot}s$ at $50^{\circ}C$. Consequently, the adhesives could be used as a sprayable resin. Through the FT-IR spectra of liquid and cured CF-based adhesives, addition reaction of methylol group and condensation reaction between the functional groups with the use of formaldehyde-based crosslinkers were identified. From the analysis of DSC, it was elucidated for CF-based adhesives to require a higher pressing temperature or longer pressing time comparing to commercial urea-formaldehyde (C-UF) resin. MDF bonded with CF-based adhesives, which was formulated with 5% NaOH-hydrolyzed CF (CF-AK-5%) and PF of formaldehyde to phenol mole ratio of 2.5 (PF-2.5), and pressed for 8 min had higher MOR and IB than those with other CF-based adhesives. MOR and IB of MDF bonded with the CF-based adhesives regardless of formulation type and pressing time were higher than those with C-UF resin. When the values compared with the minimum requirements of KS standard, IB exceeded the KS standard in all formulations and pressing time, but MOR of only MDF bonded with CF-AK-5% and PF-2.5 and pressed for 8 min satisfied the KS standard. What was worse, 24-TS of MDF bonded with all CF-based adhesives did not satisfied the KS standard. However, MOR and 24-TS can be improved by increasing the target density of MDF or the amount of wax emulsion, which is added to improve the water resistance of MDF. Importantly, the use of CF-based adhesives decreased greatly the formaldehyde emission. Based on the results, we reached the conclusion that CF-based adhesives formulated under proper conditions had a potential as a sprayable resin for the production of wood panels.

Characteristics of Low Density Fiberboards for Insulation Material with Different Adhesives (I) - Thermal Insulation Performance and Physical Properties - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(I) - 단열성능 및 물리적 성질 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.360-367
    • /
    • 2017
  • This study was carried out to compare the characteristics of low density fiberboards (LDFs) manufactured with different adhesive types such as melamine urea formaldehyde (MUF), phenol formalehyde (PF), emulsified MDI (eMDI) and latexes resins. As results, hard LDFs were successfully manufactured by MUF, PF and eMDI resins. Thermal conductivities of all LDFs were significantly lower than commercial medium density fiberboard. Especially, all LDFs showed comparable thermal insulation performance with extruded polystyrene foam (XPS). LDF manufactured with eMDI resins showed the highest physical properties such as thickness/length swelling by water absorption and bending strength.

Effects of Precipitation pH of Black Liquor on Characteristics of Precipitated and Acetone-Fractionated Kraft Lignin

  • Ega Cyntia WATUMLAWAR;Byung-Dae PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.38-48
    • /
    • 2023
  • Two important steps in utilizing technical kraft lignin (KL) from black liquor to synthesize lignin-phenol-formaldehyde (LPF) resin are its extraction via precipitation and fractionation. However, the effects of precipitation pH and acetone fractionation on the characteristics of hardwood KL have not been studied for LPF resins. Therefore, this paper reports the effects of the precipitation pH of black liquor and acetone fractionation on the characteristics of KL from mixed hardwood species for LPF resins. The precipitation was conducted at various pH levels from 3 to 9 of black liquor to obtain crude KL (C-KL), which was used in acetone fractionation to produce acetone-soluble KL (AS-KL) and acetone-insoluble KL (AI-KL). Precipitation at pH 3 and 9 produced the highest and lowest yields of C-KL, respectively. As expected, the C-KL infrared spectra were similar regardless of the precipitation pH levels. As the pH increased, the molecular weight of C-KL increased. However, the molecular weight of AS-KL and AI-KL after acetone fractionation increased to a maximum of 4,170 and 47,190 g/mol at pH 7, then decreased to 3,210 and 19,970 g/mol at pH 9, respectively. The smallest molecular weights of AS-KL and AI-KL were 3,210 and 15,480 g/mol and were found at pH 9 and 3, respectively. These results suggest that both AS-KL at pH 9 and AI-KL at pH 3 have good potential as starting lignins for synthesizing LPF resins that require cross-linking for polymerization.

Investigating The Potential of Human Hair Produced from The Beauty Parlor and Barbershop as a Raw Material of Wood Adhesives (미·이용업 폐기물 인모의 목재접착제 원료화 가능성 탐색)

  • Yang, In;Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.599-612
    • /
    • 2017
  • Human hair (HH) is produced as a waste from beauty parlor and barbershop. HH-based adhesives were formulated with NaOH-hydrolyzed HH, $H_2SO_4$-hydrolyzed chicken blood (CB) and PF as a crosslinking agent. Physicochemical properties and retention rate against hot water of the adhesives were measured to investigate the potential of HH as a raw material of wood adhesives. HH was composed of keratin-type protein of 80% and over. Ash of less than 0.1% was contained in HH. Among the amino acids included in HH, glutamic acid showed the highest content, followed by cysteine, serine, arginine and threonine. Solid content of the adhesives ranged from 33.2% to 41.8% depending on hydrolysis conditions of HH and PF type. Viscosity at $25^{\circ}C$ ranged from 300 to $600mPa{\cdot}s$ resulting in a sprayable adhesive. Retention rate against hot water measured to evaluate the water resistance of adhesives was the highest in the cured resin formulated with 5% NaOH-hydrolyzed HH and 5% $H_2SO_4$-hydrolyzed CB. Meanwhile, the molar ratio of formaldehyde to phenol in PF did not have a significant impact on the retention rate of HH-based adhesives. When the retention rates of HH-based adhesives were compared to those of conventional wood adhesive resins used for the production of wood-based panels extensively, HH-based adhesives formulated with 30 wt% PF showed lower retention rate than commercial urea-formaldehyde resin. However, when PF content was increased to 35 wt%, the retention rate greatly increased and approached to that of commercial melamine-urea-formaldehyde resin. Except for the results mentioned above, the analysis of economic feasibility suggests that HH-based adhesives can be used for the production of wood-based panels if HH is hydrolyzed in proper conditions and then the HH-based adhesives are formulated by the HH hydrolyzates with 35 wt% PF.

Role of F/P Ratio on Curing Behavior for Phenolic Resol and Novolac Resins by FT-IR (FT-IR 분석에 의한 레졸과 노블락 페놀 수지의 경화거동에 미치는 F/P 몰비)

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.16-24
    • /
    • 2001
  • The curing behavior of a phenolic resin (F/p: 1.3, 1.9, 2.5 for resol resin, F/P: 0.5, 0.7, 0.9 for novolac resin) has been studied by FT-IR spectroscopy. In this study is to synthesis of resol and novolac type phenolic resin with different F/P molar ratios and to compare the level of cure at different curing temperature conditions ($130^{\circ}C$, $160^{\circ}C$, $180^{\circ}C$ for resol resin, $160^{\circ}C$, $170^{\circ}C$, $180^{\circ}C$ for novolac resin) for 3, 5, 7, 10, 20, and 60 (min.), respectively. The conversion (${\alpha}$) was determined by the ratio of the peak area with time to the peak area of non-baked phenolic QH ($3300cm^{-1}$) at spectra. It is concluded that the initial curing rate of resol and novolac resin was increased as the molar ratio of formaldehyde/phenol increased and as the curing temperature of resin increased. According to the analysis was by the homogenous first-order model, the initial curing rate of resol and novolac resin was increased as the molar ratio of formaIdehyde/phenol increased at specific curing temperature.

  • PDF

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF