DOI QR코드

DOI QR Code

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University) ;
  • Kadla, John F. (Department of Wood Science, The University of British Columbia)
  • Received : 2012.02.20
  • Accepted : 2012.03.24
  • Published : 2012.03.25

Abstract

This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

Keywords

References

  1. Alonso, M. V., M. Oliet, J. M. Perez, F. Rodriguez, and J. Echeverria. 2004. Determination of curing kinetic parameters of lignin-phenol- formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochim. Acta 419: 161-167. https://doi.org/10.1016/j.tca.2004.02.004
  2. Byun, H. Y., M. H. Choi, and I. J. Chung. 2001. Synthesis and Characterization of resol type phenolic resin/layered silicate nanocomposite. Chem. Mater. 13: 4221-4226. https://doi.org/10.1021/cm0102685
  3. Cheng, Q., S. Wang, and T. G. Rials. 2009. Poly(vinyl alcohol) nanocomposite reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites: Part A. 40: 218-224.
  4. Choi, M. H., I. J. Chung, and J. D. Lee. 2000. Morphology and curing behaviors of phenolic resin-layered silicate nanocomposite prepared by melt intercalation. Chem. Mater. 12: 2977-2983. https://doi.org/10.1021/cm000227t
  5. Choi, M. H. and I. J. Chung. 2003. Mechanical and thermal properties of phenolic resin-layered silicate nanocomposite synthesized by melt intercalation. J. Appl. Polym. Sci. 90: 2316-2321. https://doi.org/10.1002/app.12763
  6. Coleman, J. N., U. Khan, W. J. Blau, and Y. K. Gun'ko. 2006. Small but strong: A review of the mechanical properties of carbon nanotube- polymer composites, Carbon 44: 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
  7. Fraga, I., S. Montserrat, and J. M. Hutchison. 2008. Vitrification during the isothermal cure of thermosets. Part I. An investigation using TOPEM, a new temperature modulated technique. J. Therm. Anal. Cal. 91: 687-695. https://doi.org/10.1007/s10973-007-8613-7
  8. Gill, P. S., S. R. Sauerbrunn, and M. Reading. 1993. Modulated differential scanning calorimetry. J. Thermal. Anal. 40: 931-939. https://doi.org/10.1007/BF02546852
  9. He, G. B., B. Riedl, and A. Ait-Kadi. 2003. Model-free kinetics: Curing behavior of phenol formaldehyde resins by differential scanning calorimetry. J. Appl. Polym. Sci. 87: 433-440. https://doi.org/10.1002/app.11378
  10. He, G. B. and B. Riedl. 2004. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates. Wood Sci. Tech. 38: 69-81. https://doi.org/10.1007/s00226-003-0221-5
  11. Ingram, S., I. Rhoney, J. J. Liggat, N. E. Hudson, and R. A. Pethrick. 2007. Some factors influencing exfoliation and physical property enhancement in clay epoxy resins based on diglycidyl ethers of bisphenol A and F. J. Appl.Polym. Sci. 106: 5-19. https://doi.org/10.1002/app.25474
  12. McIntyre, S., I. Kaltzakorta, J. J. Liggat, R. A. Pethrick, and I. Rhoney. 2005. Influence of the epoxy structure on the physical properties of epoxy resin nanocomposite, Ind. Eng. Chem. Res. 44: 8573-8579. https://doi.org/10.1021/ie048835w
  13. Kaynak, C. and C. C. Tasan. 2006. Effects of production parameters on the structure of resol type phenolic resin/layered silicate nano- composite. Euro. Polym. J. 42: 1908-1921. https://doi.org/10.1016/j.eurpolymj.2006.03.008
  14. Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29: 1702-1706. https://doi.org/10.1021/ac60131a045
  15. Kojima, Y., A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito. 1993. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with e-caprolactam. J. Polym. Sci. Part A: Polym. Chem. 31: 983-986.
  16. Lopez, M., M. Blanco, A. Vazquez, N. Gabilondo, A. Arbelaiz, J. M. Echeverria, and I. Mondragon. 2008. Curing characteristics of resol- layered silicate nanocomposites. Thermchim. Acta. 467: 73-79. https://doi.org/10.1016/j.tca.2007.10.017
  17. Lopez, M., M. Blanco, A. Vazquez, J. A. Ramos, A. Arbelaiz, N. Gabilondo, J. M. Echeverria, and I. Mondragon. 2009. Isoconversional kinetic analysis of resol-clay nanocomposite. J. Therm. Anal. Cal. 96: 567-573. https://doi.org/10.1007/s10973-008-9212-y
  18. Ozawa, O. A. 1965. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. of Japan 38: 1881-1886. https://doi.org/10.1246/bcsj.38.1881
  19. Park, B. D., B. Riedl, H. J. Bae, and Y. S. Kim. 1999. Differential scanning calorimetry of phenol-formaldehyde adhesives. J. Wood Chem. Tech. 19: 265-286. https://doi.org/10.1080/02773819909349612
  20. Park, B. D., B. Riedl, Y. S. Kim, and W. T. So. 2002. Effect of synthesis parameters on thermal behavior of phenol-formaldehyde resole resin. J. Appl. Polym. Sci. 83: 1415-1424. https://doi.org/10.1002/app.2302
  21. Park, J. H. and S. C. Jana. 2003. Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposite. Macromol. 36: 2758-2768. https://doi.org/10.1021/ma021509c
  22. Pavlidou, S. and C. D. Papaspyrides. 2008. A review on polymerlayered silicate nanocomposite. Prog. Polym. Sci. 33: 1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008
  23. Prolongo, S. G., M. Campo, M. R. Gude, R. Chaos-Moran, and A. Urena. 2009. Thermophysical characterization of epoxy resin reinforced by amino-functionalized carbon naonofibers. Composite Sci. Tech. 69: 349-357. https://doi.org/10.1016/j.compscitech.2008.10.018
  24. Ray, S. S. and M. Okamoto. 2003. Polymer/ layered silicate nanocomposite: a review from preparation to processing. Prog. Polym. Sci. 28: 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  25. Reading, M., D. Elliott, and V. L. Hill. 1992. Some aspects of the theory and practice of modulated differential scanning calorimetry. In: Proceedings of the 21st NATAS Conference, pp. 145-150.
  26. Reading, M. 1993. Modulated differential scanning calorimetry- a new way forward in materials characterisation. Trends Polym. Sci. 8: 248-253.
  27. Reading, M., D. Elliot, and V. L. Hill. 1993. A new approach to the calorimetric investigation of physical and chemical transitions. J. Thermal. Anal. 40: 949-955. https://doi.org/10.1007/BF02546854
  28. Reading, M., A. Luget, and R. Wilson. 1994. Modulated differential scanning calorimetry. Thermochim. Acta, 238: 295-307. https://doi.org/10.1016/S0040-6031(94)85215-4
  29. Shen, J., W. Huang, L. Wu, Y. Hu, and M. Ye. 2007. Thermo-physical properties of epoxy nanocomposite reinforced with aminofunctiona lized multi-walled carbon nanotubes. Composites: Part A. 38: 1331-1336. https://doi.org/10.1016/j.compositesa.2006.10.012
  30. Tasan, C. C. and C. C. Kaynak. 2009. Mechanical performance of resol type phenolic resin/ layered silicate nanocomposite. Polym. Compos. 30: 343-350. https://doi.org/10.1002/pc.20591
  31. Tejado A., G. Kortaberria, J. M. Echeverria, and I. Mondragon. 2008. Isoconversional kinetic analysis of novolac-type lignophenolic resin cure. Thermchim. Acta 471: 80-85. https://doi.org/10.1016/j.tca.2008.03.005
  32. Tjong, S. C. 2006. Synthesis and Structure Property Characteristics of Clay Polymer Nanocomposite. In: Tjong, S.C. (ed), Nano-crystalline Materials, Elsevier Ltd., Chapter 10, pp: 311-348.
  33. Usuki, A., Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito. 1993. Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8: 1179-1184. https://doi.org/10.1557/JMR.1993.1179
  34. Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. 1995. Modulated differential scanning calorimetry: isothermal cure and vitrification of thermosetting systems. Thermo- chim. Acta, 268: 121-142. https://doi.org/10.1016/0040-6031(95)02693-2
  35. Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. 1996. Modulated differential scanning calorimetry: Non-isothermal cure, vitrification, and devitrification of thermosetting systems. Thermochim. Acta, 286: 209-224. https://doi.org/10.1016/0040-6031(96)03005-5
  36. Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. 1997. Modulated temperature differential scanning calorimetry; Consideration for aquantitative study of thermosetting systems. J. Therm. Anal. 49: 443-447. https://doi.org/10.1007/BF01987468
  37. Vyazovkin, S. and N. Sbirrazzuoli. 2006. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Comm. 27: 1515-1532. https://doi.org/10.1002/marc.200600404
  38. Wang, J., M.-P.G. Laborie, and M. P. Wolcott. 2005. Comparison of model-free kinetic methods for modeling the cure kinetics of commercial phenol-formaldehyde resins. Thermochim. Acta 439: 68-73. https://doi.org/10.1016/j.tca.2005.09.001
  39. Wang, H., T. Zhao, Y. Y and Y. Yu. 2004. Synthesis of resol-layered Silicate nanocomposite by reaction exfoliation with acid-modified montmorillonite, J. Appl. Polym. Sci. 92: 791-797. https://doi.org/10.1002/app.13662
  40. Wu, Z., C. Zhou, and R. Qi. 2002. The preparation of phenolic resin/montmorillonite nanocomposite by suspension condensation polymerization and their morphology. Polym. Compos. 23: 634-646. https://doi.org/10.1002/pc.10463
  41. Wunderlich, B., Y. Jin, and A. Boiler. 1994. Mathematical description of differential scanning calorimetry based on periodic temperature modulation, Thermochim. Acta 238: 277-293. https://doi.org/10.1016/S0040-6031(94)85214-6
  42. Yong, R. N., S. Desjardins, J. P. Farant, and P. Simon. 1997. Influence of pH and exchangeable cation on oxidation of methylphenols by a montmorillonite clay. Appl. Clay Sci. 12: 93-110. https://doi.org/10.1016/S0169-1317(96)00043-9